Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1985 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Specificity of protein phosphotyrosine phosphatases. Comparison with mammalian alkaline phosphatase using polypeptide substrates.

Authors: J W, Sparks; D L, Brautigan;

Specificity of protein phosphotyrosine phosphatases. Comparison with mammalian alkaline phosphatase using polypeptide substrates.

Abstract

The specificity of cytosolic protein phosphotyrosine (PPT) phosphatases was investigated using different peptides and proteins that were phosphorylated on tyrosine residues by the EGF receptor kinase. The acidic phosphoproteins, serum albumin, casein, and myosin light chains, were dephosphorylated by the PPT phosphatases with apparent Km values of 1.2 to 12.5 microM and apparent velocities of 0.2 to 18 mumol/min/mg. In contrast, [Tyr(32P)]histone and the phosphotyrosine peptides [Val5]angiotensin and RR-src, a peptide with sequence Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly, were unreactive with the PPT phosphatases. However, each of these unreactive phosphopolypeptides was dephosphorylated under the same conditions by calf-intestine alkaline phosphatase. The data reveal how PPT phosphatase activity has been ascribed to different cellular enzymes. When acidic phosphotyrosine proteins were used as substrates in assays for PPT phosphatase activity the cytosolic enzymes were isolated, whereas when phosphotyrosine histones were used as substrates only the membrane-bound alkaline phosphatase was detected. Apparently the protein tyrosine kinase and the protein tyrosine phosphatases do not have the same specificity, so substrates such as histone, angiotensin, or RR-src are phosphorylated but not hydrolyzed. Therefore, these polypeptides would be ideal for the characterization of protein tyrosine kinases in cellular extracts.

Related Organizations
Keywords

Angiotensin II, Hydrolysis, Caseins, Myosins, Alkaline Phosphatase, Kidney, Substrate Specificity, Histones, Phosphoprotein Phosphatases, Animals, Rabbits, Phosphorylation, Protein Tyrosine Phosphatases, Peptides, Serum Albumin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Average
Top 10%
Top 10%
gold