Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Microbiolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Microbiology
Article . 1998 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Preprotein transfer to the Escherichia coli translocase requires the co‐operative binding of SecB and the signal sequence to SecA

Authors: Fekkes, P.; de Wit, J.G.; van der Wolk, J.P.W.; Kimsey, H.H.; Kumamoto, C.A.; Driessen, A.J.M.;

Preprotein transfer to the Escherichia coli translocase requires the co‐operative binding of SecB and the signal sequence to SecA

Abstract

In Escherichia coli, precursor proteins are targeted to the membrane‐bound translocase by the cytosolic chaperone SecB. SecB binds to the extreme carboxy‐terminus of the SecA ATPase translocase subunit, and this interaction is promoted by preproteins. The mutant SecB proteins, L75Q and E77K, which interfere with preprotein translocation in vivo, are unable to stimulate in vitro translocation. Both mutants bind proOmpA but fail to support the SecA‐dependent membrane binding of proOmpA because of a marked reduction in their binding affinities for SecA. The stimulatory effect of preproteins on the interaction between SecB and SecA exclusively involves the signal sequence domain of the preprotein, as it can be mimicked by a synthetic signal peptide and is not observed with a mutant preprotein (Δ8proOmpA) bearing a non‐functional signal sequence. Δ8proOmpA is not translocated across wild‐type membranes, but the translocation defect is suppressed in inner membrane vesicles derived from a prlA4 strain. SecB reduces the translocation of Δ8proOmpA into these vesicles and almost completely prevents translocation when, in addition, the SecB binding site on SecA is removed. These data demonstrate that efficient targeting of preproteins by SecB requires both a functional signal sequence and a SecB binding domain on SecA. It is concluded that the SecB–SecA interaction is needed to dissociate the mature preprotein domain from SecB and that binding of the signal sequence domain to SecA is required to ensure efficient transfer of the preprotein to the translocase.

Country
Netherlands
Related Organizations
Keywords

PRECURSOR PROTEINS, Recombinant Fusion Proteins, Protein Sorting Signals, LEADER PEPTIDE, Bacterial Proteins, Escherichia coli, CHAPERONE SECB, Protein Precursors, Adenosine Triphosphatases, Binding Sites, SecA Proteins, TRIGGER FACTOR, Escherichia coli Proteins, Cell Membrane, TERTIARY STRUCTURE, Membrane Transport Proteins, MATURE LAMB PROTEIN, Biological Transport, SUPPRESSOR MUTATIONS, Phenotype, MEMBRANE TRANSLOCATION, PLASMA-MEMBRANE, Mutation, SELECTIVE BINDING, SEC Translocation Channels, Bacterial Outer Membrane Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 10%
Top 10%
Top 10%
bronze