Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Cell
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Drosophila Neuralized Is a Ubiquitin Ligase that Promotes the Internalization and Degradation of Delta

Authors: Lai, Eric C.; Deblandre, Gisèle A.; Kintner, Chris; Rubin, Gerald M.;

Drosophila Neuralized Is a Ubiquitin Ligase that Promotes the Internalization and Degradation of Delta

Abstract

The Drosophila gene neuralized (neur) has long been recognized to be essential for the proper execution of a wide variety of processes mediated by the Notch (N) pathway, but its role in the pathway has been elusive. In this report, we present genetic and biochemical evidence that Neur is a RING-type, E3 ubiquitin ligase. Next, we show that neur is required for proper internalization of Dl in the developing eye. Finally, we demonstrate that ectopic Neur targets Dl for internalization and degradation in a RING finger-dependent manner, and that the two exist in a physical complex. Collectively, our data indicate that Neur is a ubiquitin ligase that positively regulates the N pathway by promoting the endocytosis and degradation of Dl.

Keywords

Homeodomain Proteins, Proteasome Endopeptidase Complex, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Embryonic Structures, Nerve Tissue Proteins, Models, Biological, Endocytosis, Cell Line, Ligases, Cysteine Endopeptidases, Drosophila melanogaster, Phenotype, Microscopy, Fluorescence, Genes, Reporter, Multienzyme Complexes, Animals, Drosophila Proteins, Humans, Photoreceptor Cells, Invertebrate, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    299
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
299
Top 10%
Top 1%
Top 1%
hybrid