Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Ubiquilin-1 regulates amyloid precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine 688

Authors: Amina, El Ayadi; Emily S, Stieren; José M, Barral; Darren, Boehning;

Ubiquilin-1 regulates amyloid precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine 688

Abstract

The pathogenesis of Alzheimer’s disease (AD) is associated with proteolytic processing of the amyloid precursor protein (APP) to an amyloidogenic peptide termed Aβ. Although mutations in APP and the secretase enzymes that mediate its processing are known to result in familial forms of AD, the mechanisms underlying the more common sporadic forms of the disease are still unclear. Evidence suggests that the susceptibility of APP to amyloidogenic processing is related to its intracellular localization, and that secretase-independent degradation may prevent the formation of cytotoxic peptide fragments. Recently, single nucleotide polymorphisms in the UBQLN1 gene have been linked to late-onset AD, and its protein product, ubiquilin-1, may regulate the maturation of full-length APP. Here we show that ubiquilin-1 inhibits the maturation of APP by sequestering it in the early secretory pathway, primarily within the Golgi apparatus. This sequestration significantly delayed the proteolytic processing of APP by secretases and the proteasome. These effects were mediated by ubiquilin-1–stimulated K63-linked polyubiquitination of lysine 688 in the APP intracellular domain. Our results reveal the mechanistic basis by which ubiquilin-1 regulates APP maturation, with important consequences for the pathogenesis of late-onset AD.

Keywords

Secretory Pathway, Lysine, Recombinant Fusion Proteins, Green Fluorescent Proteins, Ubiquitination, Golgi Apparatus, PC12 Cells, Rats, Adaptor Proteins, Vesicular Transport, Amyloid beta-Protein Precursor, Protein Transport, Proteolysis, Animals, Amyloid Precursor Protein Secretases, Lysosomes, Polyubiquitin, Protein Processing, Post-Translational, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Top 10%
bronze