Kinetics and Crystal Structure of the Wild-Type and the Engineered Y101F Mutant of Herpes simplex Virus Type 1 Thymidine Kinase Interacting with (North)-methanocarba-thymidine,
doi: 10.1021/bi000668q
pmid: 10924157
Kinetics and Crystal Structure of the Wild-Type and the Engineered Y101F Mutant of Herpes simplex Virus Type 1 Thymidine Kinase Interacting with (North)-methanocarba-thymidine,
Kinetic and crystallographic analyses of wild-type Herpes simplex virus type 1 thymidine kinase (TK(HSV1)) and its Y101F-mutant [TK(HSV1)(Y101F)] acting on the potent antiviral drug 2'-exo-methanocarba-thymidine (MCT) have been performed. The kinetic study reveals a 12-fold K(M) increase for thymidine processed with Y101F as compared to the wild-type TK(HSV1). Furthermore, MCT is a substrate for both wild-type and mutant TK(HSV1). Its binding affinity for TK(HSV1) and TK(HSV1)(Y101F), expressed as K(i), is 11 microM and 51 microM, respectively, whereas the K(i) for human cytosolic thymidine kinase is as high as 1.6 mM, rendering TK(HSV1) a selectivity filter for antiviral activity. Moreover, TK(HSV1)(Y101F) shows a decrease in the quotient of the catalytic efficiency (k(cat)/K(M)) of dT over MCT corresponding to an increased specificity for MCT when compared to the wild-type enzyme. Crystal structures of wild-type and mutant TK(HSV1) in complex with MCT have been determined to resolutions of 1.7 and 2.4 A, respectively. The thymine moiety of MCT binds like the base of dT while the conformationally restricted bicyclo[3.1.0]hexane, mimicking the sugar moiety, assumes a 2'-exo envelope conformation that is flatter than the one observed for the free compound. The hydrogen bond pattern around the sugar-like moiety differs from that of thymidine, revealing the importance of the rigid conformation of MCT with respect to hydrogen bonds. These findings make MCT a lead compound in the design of resistance-repellent drugs for antiviral therapy, and mutant Y101F, in combination with MCT, opens new possibilities for gene therapy.
- National Cancer Institute United States
- National Institutes of Health United States
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
Models, Molecular, Macromolecular Substances, Protein Conformation, Phenylalanine, Molecular Sequence Data, Herpesvirus 1, Human, Crystallography, X-Ray, Binding, Competitive, Thymidine Kinase, Bridged Bicyclo Compounds, Kinetics, Amino Acid Substitution, Mutagenesis, Site-Directed, Humans, Tyrosine, Enzyme Inhibitors, Phosphorylation, Crystallization, Thymidine
Models, Molecular, Macromolecular Substances, Protein Conformation, Phenylalanine, Molecular Sequence Data, Herpesvirus 1, Human, Crystallography, X-Ray, Binding, Competitive, Thymidine Kinase, Bridged Bicyclo Compounds, Kinetics, Amino Acid Substitution, Mutagenesis, Site-Directed, Humans, Tyrosine, Enzyme Inhibitors, Phosphorylation, Crystallization, Thymidine
3 Research products, page 1 of 1
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).46 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
