Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurobiology of Dise...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurobiology of Disease
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurobiology of Disease
Article . 2011
Data sources: DOAJ
versions View all 3 versions

Angiopoietin/Tie2 pathway mediates type 2 diabetes induced vascular damage after cerebral stroke

Authors: Xu Cui; Michael Chopp; Alex Zacharek; Xinchun Ye; Cynthia Roberts; Jieli Chen;

Angiopoietin/Tie2 pathway mediates type 2 diabetes induced vascular damage after cerebral stroke

Abstract

We investigated the changes and the molecular mechanisms of cerebral vascular damage after stroke in type-2 diabetic (T2DM) mice. Adult male db/db T2DM and wild-type (WT) mice were subjected to transient middle cerebral artery occlusion (MCAo) and sacrificed 24 hours after MCAo. T2DM-mice exhibited significantly increased blood glucose, brain hemorrhagic rate, mortality and cerebrovascular density, but decreased cerebrovascular diameter, arteriolar density and arterial mural cell numbers in the ischemic brain compared with WT mice. The hemorrhagic rate was significantly correlated with the mortality (r = 0.85). T2DM-mice also exhibited increased blood-brain barrier leakage and concomitantly, increased Angiopoietin2, but decreased Angiopoietin1, Tie2 and tight junction protein expression in the ischemic brain. Angiopoietin1 gene expression also significantly decreased in the common carotid artery (CCA) in T2DM-mice compared with WT mice after stroke. To further test the effects of T2DM on cerebrovascular damage, we performed in vitro studies. The capillary-like tube formation of primary cultured mouse brain endothelial cells (MBECs) significantly increased, but artery cell migration in the primary CCA cultures significantly decreased both in Sham and MCAo T2DM-mice compared with the WT mice. Angiopoietin1 treatment significantly increased artery cell migration in T2DM-CCA after MCAo. Tie2-FC, a neutralized Tie2 antibody, significantly decreased artery cell migration in WT-CCA after MCAo. Therefore, decreased Angiopoietin1/Tie2 and increased Angiopoietin2 expression may contribute to diabetes-induced vascular damage after stroke.

Related Organizations
Keywords

Male, Diabetes, Down-Regulation, Receptor Protein-Tyrosine Kinases, Neurosciences. Biological psychiatry. Neuropsychiatry, Infarction, Middle Cerebral Artery, Mice, Transgenic, Vascular damage, Angiopoietin, Cerebral Arteries, Receptor, TIE-2, Up-Regulation, Stroke, Angiopoietin-2, Disease Models, Animal, Mice, Diabetes Mellitus, Type 2, Angiopoietin-1, Animals, Cells, Cultured, Diabetic Angiopathies, RC321-571

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
gold