Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Combinatorial Signaling by an Unconventional Wg Pathway and the Dpp Pathway Requires Nejire (CBP/p300) to Regulate dpp Expression in Posterior Tracheal Branches

Authors: Stuart J. Newfeld; Norma T. Takaesu; Aaron N. Johnson; O. H. Sultani;

Combinatorial Signaling by an Unconventional Wg Pathway and the Dpp Pathway Requires Nejire (CBP/p300) to Regulate dpp Expression in Posterior Tracheal Branches

Abstract

The decapentaplegic (dpp) gene influences many developmental events in Drosophila melanogaster. We have been analyzing dpp expression in two groups of dorsal ectoderm cells at the posterior end of the embryo, in abdominal segment 8 and the telson. These dpp-expressing cells become tracheal cells in the posterior-most branches of the tracheal system (Dorsal Branch10, Spiracular Branch10, and the Posterior Spiracle). These branches are not identified by reagents typically used in analyses of tracheal development, suggesting that dpp expression confers a distinct identity upon posterior tracheal cells. We have determined that dpp posterior ectoderm expression begins during germ band extension and continues throughout development. We have isolated the sequences responsible for these aspects of dpp expression in a reporter gene. We have determined that an unconventional form of Wingless (Wg) signaling, Dpp signaling, and the transcriptional coactivator Nejire (CBP/p300) are required for the initiation and maintenance of dpp expression in the posterior-most branches of the tracheal system. Our data suggest a model for the integration of Wg and Dpp signals that may be applicable to branching morphogenesis in other developmental systems.

Related Organizations
Keywords

posterior spiracle, Heterozygote, Time Factors, Zygote, Wnt1 Protein, combinatorial signaling, Models, Biological, Bacterial Proteins, Genes, Reporter, Proto-Oncogene Proteins, Animals, Drosophila Proteins, Molecular Biology, Decapentaplegic, Gene Expression Regulation, Developmental, Nuclear Proteins, Cell Biology, beta-Galactosidase, p300), Trachea, dorsal ectoderm, Nejire (CBP, Drosophila melanogaster, Wingless, tracheal system, Mutation, Trans-Activators, Drosophila, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
hybrid