Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 1987 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Immunochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode Caenorhabditis elegans.

Authors: J P, Ardizzi; H F, Epstein;

Immunochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode Caenorhabditis elegans.

Abstract

The nematode Caenorhabditis elegans contains two major groups of muscle cells that exhibit organized sarcomeres: the body wall and pharyngeal muscles. Several additional groups of muscle cells of more limited mass and spatial distribution include the vulval muscles of hermaphrodites, the male sex muscles, the anal-intestinal muscles, and the gonadal sheath of the hermaphrodite. These muscle groups do not exhibit sarcomeres and therefore may be considered smooth. Each muscle cell has been shown to have a specific origin in embryonic cell lineages and differentiation, either embryonically or postembryonically (Sulston, J. E., and H. R. Horvitz. 1977. Dev. Biol. 56:110-156; Sulston, J. E., E. Schierenberg, J. White, and J. N. Thomson. 1983. Dev. Biol. 100:64-119). Each muscle type exhibits a unique combination of lineage and onset of differentiation at the cellular level. Biochemically characterized monoclonal antibodies to myosin heavy chains A, B, C, and D and to paramyosin have been used in immunochemical localization experiments. Paramyosin is detected by immunofluorescence in all muscle cells. Myosin heavy chains C and D are limited to the pharyngeal muscle cells, whereas myosin heavy chains A and B are localized not only within the sarcomeres of body wall muscle cells, as reported previously, but to the smooth muscle cells of the minor groups as well. Myosin heavy chains A and B and paramyosin proteins appear to be compatible with functionally and structurally distinct muscle cell types that arise by multiple developmental pathways.

Related Organizations
Keywords

Muscles, Disorders of Sex Development, Myosin Subfragments, Antibodies, Monoclonal, Fluorescent Antibody Technique, Muscle, Smooth, Tropomyosin, Myosins, Immunohistochemistry, Peptide Fragments, Caenorhabditis, Animals, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 10%
Top 10%
Top 10%
bronze