Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2007
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Characterization of Arabidopsis AtUGT85A and AtGUS gene families and their expression in rapidly dividing tissues

Authors: Woo, Ho-Hyung; Jeong, Byeong Ryong; Hirsch, Ann M.; Hawes, Martha C.;

Characterization of Arabidopsis AtUGT85A and AtGUS gene families and their expression in rapidly dividing tissues

Abstract

In humans, uridine 5'-diphosphate glucuronosyltransferase (UGT) operates in opposition to glucuronidase (GUS) to control activity of diverse metabolites such as hormones by reversible conjugation with glucuronic acid. Previous data revealed that, as in mammals, these enzymes are required for plant life in that a UGT from Pisum sativum (PsUGT1) controls plant development by opposing endogenous GUS activity thereby modulating the duration of the cell cycle. Here we report that a small family of genes (AtUGT85A1, 2, 3, 4, 5, and 7) homologous to pea PsUGT1 exists in the Arabidopsis genome. The AtUGT85A-encoded proteins are predicted to be membrane-associated enzymes. Three genes (AtGUS1, AtGUS2, and AtGUS3) that are homologous to a GUS-encoding gene from Scutellaria baicalensis were identified. The AtGUS-encoded proteins are predicted to be secretory (AtGUS1) and membrane-associated (AtGUS2 and AtGUS3) enzymes. Both AtUGT85A and AtGUS genes, like PsUGT1, exhibit localized, tissue-specific expression, mainly in areas of active cell division with possible involvement in cell cycle regulation.

Keywords

Lethality, Glycosylation, Molecular Sequence Data, Arabidopsis, Genes, Plant, Gene Expression Regulation, Multigene Family, Genetics, Arabidopsis AtUGT85A family, Amino Acid Sequence, UDP-glycosyltransferase, Glucuronosyltransferase, Cell Division, Cell Proliferation, Glucuronidase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold