Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Alzheimer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Alzheimer s Disease
Article . 2010 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Alzheimer s Disease
Article . 2010
Data sources: mEDRA
versions View all 2 versions

Amyloid-β Decreases Cell-Surface AMPA Receptors by Increasing Intracellular Calcium and Phosphorylation of GluR2

Authors: Shi-Jie, Liu; Robert, Gasperini; Lisa, Foa; David Henry, Small;

Amyloid-β Decreases Cell-Surface AMPA Receptors by Increasing Intracellular Calcium and Phosphorylation of GluR2

Abstract

α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) are key regulators of synaptic function and cognition. In Alzheimer's disease (AD), cell-surface AMPARs are downregulated, however the reason for this downregulation is not clear. In the present study, we found that Aβ significantly decreased levels of the cell-surface AMPA-type glutamate receptor subunit 2 (GluR2), and increased the concentration of free cytosolic calcium ion ([Ca2+]i) in hippocampal neurons. Ion channel blockers (nifedipine, tetrodotoxin, SKF96365) decreased [Ca2+i and increased the level of cell-surface GluR2, whereas Bay K 8644, an activator of L-type voltage-gated calcium channels increased [Ca2+]i and decreased cell-surface GluR2. Aβ and Bay K 8644 increased phosphorylation of serine-880 (S880) on GluR2, whereas the nifedipine. tetrodotoxin and SKF96365 decreased S880 phosphorylation. Finally, we found that bisindolylmeimide I (GF 109203X, GFX), an inhibitor of protein kinase C (PKC) blocked both the decrease in cell-surface GluR2 and the increase in phospho-S880 induced by Aβ and Bay K 8644. Taken together, these results demonstrate that Aβ decreases cell-surface GluR2 by increasing PKC-mediated phosphorylation of S880. Our study supports the view that a rise in cytosolic [Ca2+]i induced by Aβ could impair synaptic function by decreasing the availability of AMPARs at the synapse. This decrease in AMPARs may contribute to the decline in cognitive function seen in AD.

Keywords

Neurons, Amyloid beta-Peptides, Receptors, Cell Surface, Hippocampus, Synaptic Transmission, Mice, Inbred C57BL, Mice, Cytosol, Alzheimer Disease, Animals, Calcium, Receptors, AMPA, Phosphorylation, Cells, Cultured, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
hybrid