Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aging Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article . 2010
versions View all 2 versions

Mortality shifts in Caenorhabditis elegans: remembrance of conditions past

Authors: Deqing, Wu; Shane L, Rea; James R, Cypser; Thomas E, Johnson;

Mortality shifts in Caenorhabditis elegans: remembrance of conditions past

Abstract

SummaryThe analysis of age‐specific mortality can yield insights into how anti‐aging interventions operate that cannot be matched by simple assessment of longevity. Mortality, as opposed to longevity, can be used to assess the effects of an anti‐aging intervention on a daily basis, rather than only after most animals have died. Various gerontogene mutations in Caenorhabditis elegans have been shown to increase longevity as much as tenfold and to decrease mortality at some ages even more. Environmental alterations, such as reduced food intake (dietary restriction) and lower temperature also result in reduced mortality soon after the intervention. Here, we ask how soon anti‐aging interventions, applied during adult life, affect age‐specific mortality in nematodes. Using maximum likelihood analysis, we estimated the Gompertz parameters after shifts of temperature, and of food concentration and maintenance conditions. In separate experiments, we altered expression of age‐1 and daf‐16, using RNAi. Using about 44 000 nematodes in total, to examine daily mortality, we find that for both types of environmental shift, mortality responded immediately in the first assessment, while RNAi‐induced changes resulted in a slower response, perhaps due to delayed mechanics of RNAi action. However, under all conditions there is a permanent ‘memory’ of past states, such that the initial mortality component [a] of the Gompertz equation [μ(x) = aebx] bears a permanent ‘imprint’ of that earlier state. However, ‘b’ (the rate of mortality increase with age) is always specified by the current conditions.

Keywords

Aging, Longevity, Animals, RNA Interference, Caenorhabditis elegans, Caenorhabditis elegans Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average
gold