Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2009
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Cyclophilin 40 is required for microRNA activity in Arabidopsis

Authors: Smith, M.; Willmann, M.; Wu, G.; Berardini, T.; Moller, B.K.; Weijers, D.; Poethig, R.S.;

Cyclophilin 40 is required for microRNA activity in Arabidopsis

Abstract

Loss-of-function mutations of SQUINT ( SQN )—which encodes the Arabidopsis orthologue of cyclophilin 40 (CyP40)—cause the precocious expression of adult vegetative traits, an increase in carpel number, and produce abnormal spacing of flowers in the inflorescence. Here we show that the vegetative phenotype of sqn is attributable to the elevated expression of miR156-regulated members of the SPL family of transcription factors and provide evidence that this defect is a consequence of a reduction in the activity of ARGONAUTE1 (AGO1). Support for this latter conclusion was provided by the phenotypic similarity between hypomorphic alleles of AGO1 and null alleles of SQN and by the genetic interaction between sqn and these alleles. Our results suggest that AGO1, or an AGO1-interacting protein, is a major client of CyP40 and that miR156 and its targets play a central role in the regulation of vegetative phase change in Arabidopsis .

Keywords

binding, immunophilin chaperones, Arabidopsis Proteins, receptor, temporal regulation, Arabidopsis, hsp90, isomerases, translational inhibition, Cyclophilins, MicroRNAs, Phenotype, Argonaute Proteins, Peptidyl-Prolyl Isomerase F, thaliana, gene, protein, Alleles, Plant Physiological Phenomena

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 10%
Top 1%
Green
bronze