Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2005 . Peer-reviewed
Data sources: Crossref
Development
Article . 2006
versions View all 2 versions

Mutual repression betweenmshand Iro-C is an essential component of the boundary between body wall and wing inDrosophila

Authors: Juan Modolell; Eugenia Villa-Cuesta;

Mutual repression betweenmshand Iro-C is an essential component of the boundary between body wall and wing inDrosophila

Abstract

During development, the imaginal wing disc of Drosophila is subdivided into territories separated by developmental boundaries. The best characterized boundaries delimit compartments defined by cell-lineage restrictions. Here, we analyze the formation of a boundary that does not rely on such restrictions, namely, that which separates the notum (body wall) and the wing hinge (appendage). It is known that the homeobox genes of the Iroquois complex (Iro-C) define the notum territory and that the distal limit of the Iro-C expression domain demarks the boundary between the notum and the wing hinge. However, it is unclear how this boundary is established and maintained. We now find that msh, a homeobox gene of the Msx family,is strongly expressed in the territory of the hinge contiguous to the Iro-C domain. Loss- and gain-of-function analyses show that msh maintains Iro-C repressed in the hinge, while Iro-C prevents high level expression of msh in the notum. Thus, a mutual repression between msh and Iro-C is essential to set the limit between the contiguous domains of expression of these genes and therefore to establish and/or maintain the boundary between body wall and wing. In addition, we find that msh is necessary for proper growth of the hinge territory and the differentiation of hinge structures. msh also participates in the patterning of the notum, where it is expressed at low levels.

Keywords

Homeodomain Proteins, Oligonucleotides, Gene Expression Regulation, Developmental, Epistasis, Genetic, beta-Galactosidase, Animals, Drosophila Proteins, Wings, Animal, Drosophila, Cloning, Molecular, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
bronze