Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Naturearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2000
versions View all 2 versions

Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer

Authors: M, Nishita; M K, Hashimoto; S, Ogata; M N, Laurent; N, Ueno; H, Shibuya; K W, Cho;

Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer

Abstract

Members of the Wnt and TGF-beta superfamilies regulate both cell fate and proliferation during development and tissue maintenance. In the early amphibian embryo, the Wnt and TGF-beta superfamily signalling cascades are required for the establishment of a dorsal signalling centre, Spemann's organizer. Intracellular proteins of both pathways, upon activation, translocate to the nucleus to participate in transcription. Here we show that beta-catenin and Lef1/Tcf, which are downstream components of the Wnt signalling cascade, form a complex with Smad4, an essential mediator of signals initiated by members of the TGF-beta growth factor superfamily. In Xenopus, this interaction directly and synergistically affects expression of the twin (Xtwn) gene during formation of the organizer. This is, to our knowledge, the first demonstration of a physical interaction between TGF-beta and Wnt signalling components in vivo.

Keywords

Homeodomain Proteins, Xenopus, Organizers, Embryonic, DNA Footprinting, Gene Expression Regulation, Developmental, Smad Proteins, 3T3 Cells, Xenopus Proteins, Cell Line, DNA-Binding Proteins, Wnt Proteins, Cytoskeletal Proteins, Mice, Transforming Growth Factor beta, Proto-Oncogene Proteins, Trans-Activators, Animals, Nerve Growth Factors, Signal Transduction, Smad4 Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    442
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
442
Top 1%
Top 1%
Top 0.1%
bronze