Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hypertension Researc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hypertension Research
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Cardiac remodeling and diastolic dysfunction in DahlS.Z-Leprfa/Leprfa rats: a new animal model of metabolic syndrome

Authors: Tamayo, Murase; Takuya, Hattori; Masafumi, Ohtake; Mayuna, Abe; Yui, Amakusa; Miwa, Takatsu; Toyoaki, Murohara; +1 Authors

Cardiac remodeling and diastolic dysfunction in DahlS.Z-Leprfa/Leprfa rats: a new animal model of metabolic syndrome

Abstract

We recently characterized male DahlS.Z-Lepr(fa)/Lepr(fa) (Dahl salt-sensitive (DS)/obese) rats, which were established from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome (MetS). We have now investigated cardiac pathophysiology and metabolic changes in female DS/obese rats in comparison with homozygous lean female littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean, rats). Animals were maintained on a normal diet and were subjected to echocardiography followed by various pathological analyses at 15 weeks of age. Systolic blood pressure was significantly higher in female DS/obese rats than in DS/lean females at 12 weeks of age and thereafter. The survival rate of DS/obese rats was significantly lower than that of DS/lean rats at 15 weeks. Body weight, as well as visceral and subcutaneous fat mass were significantly increased in DS/obese rats, which also manifested left ventricular (LV) diastolic dysfunction and marked LV hypertrophy and fibrosis. In addition, myocardial oxidative stress and inflammation were increased in DS/obese rats compared with DS/lean rats. Serum insulin and triglyceride levels as well as the ratio of low-density lipoprotein- to high-density lipoprotein-cholesterol levels were markedly elevated in DS/obese rats, whereas fasting serum glucose concentrations were similar in the two rat strains. The phenotype of female DS/obese rats is similar to that of MetS in humans. These animals also develop salt-sensitive hypertension and LV diastolic dysfunction as well as LV hypertrophy and fibrosis, and these changes are associated with increased cardiac oxidative stress and inflammation.

Keywords

Metabolic Syndrome, Aging, Rats, Inbred Dahl, Body Weight, Gene Expression, Blood Pressure, Real-Time Polymerase Chain Reaction, Fibrosis, Immunohistochemistry, Rats, Disease Models, Animal, Myocarditis, Oxidative Stress, Diastole, Animals, Receptors, Leptin, Female, Myocytes, Cardiac, Obesity, Cell Size

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
bronze