Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Medicinal Chemistry
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Carbonic Anhydrase Inhibitors. Comparison of Chlorthalidone and Indapamide X-ray Crystal Structures in Adducts with Isozyme II: When Three Water Molecules and the Keto−Enol Tautomerism Make the Difference

Authors: C. Temperini; A. Cecchi; SCOZZAFAVA, ANDREA; SUPURAN, CLAUDIU TRANDAFIR;

Carbonic Anhydrase Inhibitors. Comparison of Chlorthalidone and Indapamide X-ray Crystal Structures in Adducts with Isozyme II: When Three Water Molecules and the Keto−Enol Tautomerism Make the Difference

Abstract

Thiazide diuretics inhibit all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1) with a different profile as compared to classical inhibitors. Acting as moderate-weak inhibitors of CA II and CA I, chlorthalidone and indapamide considerably inhibit other isozymes among the 16 CAs present in vertebrates. These compounds show a different behavior against CAs I and II, with chlorthalidone being 18.3 times more potent against CA II and 150 times more potent against CA I, as compared to indapamide. In the X-ray crystal structures of the CA II-chlorthalidone adduct three active site water molecules interacting with the inhibitor scaffold were observed that lack in the corresponding indapamide adduct. Chlorthalidone bound within the active site is in an enolic tautomeric form, with the OH moiety participating in two strong hydrogen bonds with Asn67 and a water molecule. This binding mode may be exploited for designing better CA II inhibitors.

Related Organizations
Keywords

Isoenzymes, Models, Molecular, Catalytic Domain, Indapamide, Chlorthalidone, Water, Stereoisomerism, Carbonic Anhydrase Inhibitors; Catalytic Domain; Chlorthalidone; Crystallography; X-Ray; Indapamide; Isoenzymes; Models; Molecular; Stereoisomerism; Water, Carbonic Anhydrase Inhibitors, Crystallography, X-Ray

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%