Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2003 . Peer-reviewed
Data sources: Crossref
Development
Article . 2003
versions View all 2 versions

Orb and a long poly(A) tail are required for efficientoskartranslation at the posterior pole of theDrosophilaoocyte

Authors: Stefania, Castagnetti; Anne, Ephrussi;

Orb and a long poly(A) tail are required for efficientoskartranslation at the posterior pole of theDrosophilaoocyte

Abstract

During Drosophila oogenesis, the posterior determinant, Oskar, is tightly localized at the posterior pole of the oocyte. The exclusive accumulation of Oskar at this site is ensured by localization-dependent translation of oskar mRNA: translation of oskar mRNA is repressed during transport and activated upon localization at the posterior cortex. Previous studies have suggested that oskar translation is poly(A)-independent. We show that a long poly(A) tail is required for efficient oskar translation, both in vivo and in vitro, but is not sufficient to overcome BRE-mediated repression. Moreover, we show that accumulation of Oskar activity requires the Drosophila homolog of Cytoplasmic Polyadenylation Element Binding protein (CPEB), Orb. As posterior localization of oskar mRNA is an essential prerequisite for its translation, it was critical to identify an allele of orb that does localize oskar mRNA to the posterior pole of the oocyte. We show that flies bearing the weak mutation orbmel localizeoskar transcripts with a shortened poly(A) that fails to enhanceoskar translation, resulting in reduced Oskar levels and posterior patterning defects. We conclude that Orb-mediated cytoplasmic polyadenylation stimulates oskar translation to achieve the high levels of Oskar protein necessary for posterior patterning and germline differentiation.

Related Organizations
Keywords

Embryo, Nonmammalian, RNA-Binding Proteins, Drosophila melanogaster, Fertility, Phenotype, Protein Biosynthesis, Mutation, Oocytes, Animals, Drosophila Proteins, Female, RNA, Messenger, In Situ Hybridization, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 10%
Top 10%
bronze