Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Hepatic overexpression of dominant negative Mlx improves metabolic profile in diabetes-prone C57BL/6J mice

Authors: Yukio Horikawa; Yukio Horikawa; Katsumi Iizuka; Jun Takeda;

Hepatic overexpression of dominant negative Mlx improves metabolic profile in diabetes-prone C57BL/6J mice

Abstract

Mlx and ChREBP form a heterodimer to regulate glucose-mediated gene expression in the liver. This study was performed to determine if the metabolic syndrome might be improved using dominant negative Mlx (dnMlx). An adenovirus bearing dnMlx was constructed and used to test the inhibitory effect of dnMlx on lipogenesis both in vitro and in vivo. Adenoviral overexpression of dnMlx in rat hepatocytes inhibited expression of glucose-regulated genes, including Chrebp and Transketolase, which constitute a positive feedback loop in the regulation of Chrebp gene expression. Adenoviral overexpression of dnMlx in 25-week-old male C57BL/6J mice reduced hepatic triglyceride contents and improved glucose intolerance by inhibiting expression of Glucose-6-phosphatase and Elovl6 mRNA in addition to lipogenic enzymes. In conclusion, overexpression of dnMlx improves glucose intolerance by inhibiting expression not only of lipogenic enzymes but also other important genes such as Glucose-6-phosphatase and Elovl6.

Keywords

Male, Metabolic Syndrome, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Fatty Acid Elongases, Gene Expression, Nuclear Proteins, Rats, DNA-Binding Proteins, Mice, Liver, Acetyltransferases, Glucose Intolerance, Diabetes Mellitus, Glucose-6-Phosphatase, Hepatocytes, Animals, Fatty Acid Synthases, Dimerization, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%