Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Gln3 Phosphorylation and Intracellular Localization in Nutrient Limitation and Starvation Differ from Those Generated by Rapamycin Inhibition of Tor1/2 in Saccharomyces cerevisiae

Authors: Kathleen H, Cox; Ajit, Kulkarni; Jennifer J, Tate; Terrance G, Cooper;

Gln3 Phosphorylation and Intracellular Localization in Nutrient Limitation and Starvation Differ from Those Generated by Rapamycin Inhibition of Tor1/2 in Saccharomyces cerevisiae

Abstract

The ability of the cell to sense environmental conditions and alter gene expression in response to them is critical to its survival. In Saccharomyces cerevisiae, the Tor1/2 serine/threonine kinases are global regulators situated at the top of a signal cascade reported to receive and transmit nutritional signals associated with the nitrogen supply of the cell. At the other end of that cascade is Gln3, one of two transcriptional activators responsible for most nitrogen catabolic gene expression. When nitrogen is in excess, Tor1/2 are active, and Gln3 is phosphorylated and localizes to the cytoplasm. If Tor1/2 are inhibited by rapamycin or mutation, Gln3 becomes dephosphorylated, accumulates in the nucleus, and mediates nitrogen catabolite repression (NCR)-sensitive transcription. The observations that Gln3 also accumulates in the nuclei of cells provided with poor nitrogen sources or during nitrogen starvation has led to the conclusion that Tor1/2 control intracellular Gln3 localization and NCR-sensitive transcription by regulating Gln3 phosphorylation/dephosphorylation. To test this model, we compared Gln3 phosphorylation states and intracellular localizations under a variety of physiological conditions known to elicit different levels of NCR-sensitive transcription. Our data indicate that: (i) observable Gln3 phosphorylation levels do not correlate in a consistent way with the quality or quantity of the nitrogen source provided, the intracellular localization of Gln3, or the capacity to support NCR-sensitive transcription. (ii) Gln3-Myc(13) is hyperphosphorylated during nitrogen and carbon starvation, but this uniform response does not correlate with Gln3 intracellular localization. (iii) Gln3-Myc(13) dephosphorylation and nuclear localization correlate with one another at early but not late times after rapamycin treatment. These data suggest that rapamycin treatment and growth with poor nitrogen sources bring about nuclear accumulation of Gln3 but likely do so by different mechanisms or by a common mechanism involving molecules other than Gln3 and/or other than the levels of Gln3-Myc(13) phosphorylation thus far detected by others and ourselves.

Keywords

Sirolimus, Cytoplasm, Antifungal Agents, Saccharomyces cerevisiae Proteins, Time Factors, Nitrogen, Blotting, Western, Cell Cycle Proteins, Saccharomyces cerevisiae, Alkaline Phosphatase, Blotting, Northern, Phosphoric Monoester Hydrolases, Repressor Proteins, Phosphatidylinositol 3-Kinases, Phosphotransferases (Alcohol Group Acceptor), Ammonium Sulfate, Phosphorylation, Fluorescent Antibody Technique, Indirect, Gene Deletion, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
gold