Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.zora.uzh...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.zora.uzh.ch/id/epr...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Zurich Open Repository and Archive
Part of book or chapter of book . 2011
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2011
Data sources: Datacite
versions View all 3 versions

Fluorescent-Based Quantitative Measurements of Signal Transduction in Single Cells

Authors: Pelet, Serge; Peter, Matthias;

Fluorescent-Based Quantitative Measurements of Signal Transduction in Single Cells

Abstract

Budding yeast (Saccharomyces cerevisiae) has been widely used as a model system to study fundamental biological processes. Genetic and biochemical approaches have allowed in the last decades to uncover the key components involved in many signaling pathways. Generally, most techniques measure the average behavior of a population of cells, and thus miss important cell-to-cell variations. With the recent progress in fluorescent proteins, new avenues have been opened to quantitatively study the dynamics of signaling in single living cells. In this chapter, we describe several techniques based on fluorescence measurements to quantify the activation of biological pathways. Flow cytometry allows for rapid quantification of the total fluorescence of a large number of single cells. In contrast, microscopy offers a lower throughput but allows to follow with a high temporal resolution the localization of proteins at sub-cellular resolution. Finally, advanced functional imaging techniques such as FRET and FCS offer the possibility to directly visualize the formation of protein complexes or to quantify the activity of proteins in vivo. Together these techniques present powerful new approaches to study cellular signaling and will greatly increase our understanding of the regulation of signaling networks in budding yeast and beyond.

Country
Switzerland
Related Organizations
Keywords

SX00 SystemsX.ch, SX20 Research, Technology and Development Projects, 570 Life sciences; biology, SX16 YeastX

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green