Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

GM-CSF cannot substitute for M-CSF in human osteoclastogenesis

Authors: Hodge, Jason M.; Kirkland, Mark A.; Nicholson, Geoffrey C.;

GM-CSF cannot substitute for M-CSF in human osteoclastogenesis

Abstract

Osteopetrotic mice lacking functional M-CSF recover with ageing, suggesting alternate osteoclastogenesis pathways exist. One alternative is GM-CSF, treatment with which improves the osteopetrosis. Our objective was to determine whether GM-CSF could replace M-CSF in human osteoclastogenesis in vitro. Human CFU-GM precursors cultured with RANKL differentiate into osteoclasts without added M-CSF, indicating constitutive production of M-CSF. Addition of M-CSF antibody completely inhibited differentiation, demonstrating M-CSF-dependence in vitro. Co-treatment with low concentrations (0.01 ng/mL) of GM-CSF for 14 days or higher concentrations (10 ng/mL) for the first 1-2 days enhanced osteoclastogenesis but this effect was blocked with M-CSF antibody. Treatment with GM-CSF transiently increased M-CSF mRNA expression at 3 h but suppressed expression at 7-14 days. Neither FLT3-ligand nor VEGF supported osteoclastogenesis in the absence of M-CSF. Thus, in vitro human osteoclastogenesis is dependent on M-CSF and the stimulatory effects of GM-CSF are mediated by M-CSF. Rescue by GM-CSF in M-CSF-deficiency is unlikely to be directly mediated by FLT3-ligand or VEGF.

Keywords

Transcription, Genetic, Recombinant Fusion Proteins, Osteoclasts, Polymerase Chain Reaction, Colony-Forming Units Assay, Mice, Granulocyte-macrophage colony-stimulation factor, Animals, Humans, Colony forming unit-granulocyte-macrophage, RNA, Messenger, DNA Primers, Membrane Glycoproteins, Base Sequence, Receptor Activator of Nuclear Factor-kappa B, Macrophage Colony-Stimulating Factor, Macrophage-colony-stimulating factor, RANK Ligand, Granulocyte-Macrophage Colony-Stimulating Factor, Fetal Blood, Recombinant Proteins, Gene Expression Regulation, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%