Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 6 versions

Basis For Abnormal Desquamation And Permeability Barrier Dysfunction in RXLI

Authors: Elias, P.; Crumrine, D.; Rassner, U.; Hachem, Jean-Pierre; Menon, G.; Man, W.; Choy, M.; +3 Authors

Basis For Abnormal Desquamation And Permeability Barrier Dysfunction in RXLI

Abstract

Mutations in the gene for steroid sulfatase (SSase), are responsible for recessive x-linked ichthyosis (RXLI). As a consequence of SSase deficiency, its substrate, cholesterol sulfate (CSO4), accumulates in the epidermis. Accumulation of this amphipathic lipid in the outer epidermis provokes both a typical scaling phenotype and permeability barrier dysfunction. Research on RXLI has illuminated several, potentially overlapping pathogenic mechanisms and provided insights about the role of SSase and CSO4 in normal differentiation, barrier maintenance, and desquamation. We now show here that SSase is concentrated in lamellar bodies (LB), and secreted into the SC interstices, along with other LB-derived lipid hydrolases. There, it degrades CSO4, generating some cholesterol for the barrier, while the progressive decline in CSO4 (a serine protease (SP) inhibitor) permits corneodesmosome (CD) degradation leading to normal desquamation. Two molecular pathways contribute to disease pathogenesis in RXLI: 1) excess CSO4 produces nonlamellar phase separation in the stratum corneum (SC) interstices, explaining the barrier abnormality. 2) The increased CSO4 in the SC interstices inhibit activity sufficiently to delay CD degradation, leading to corneocyte retention. We also show here that increased Ca++ in the SC interstices in RXLI could contribute to corneocyte retention, by increasing CD and interlamellar cohesion. RXLI represents one of the best understood diseases in dermatology--from the gene to the SC interstices, its etiology and pathogenesis are becoming clear, and assessment of disease mechanisms in RXLI led to new insights about the role of SSase and CSO4 in epidermis terminal differentiation.

Country
Belgium
Keywords

Ichthyosis, X-Linked, Genes, Recessive, Cell Biology, Dermatology, Biochemistry, Permeability, Animals, Humans, Steryl-Sulfatase, Molecular Biology, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 10%
Top 10%
hybrid