Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The FASEB Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
AJP Renal Physiology
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

WNK4 kinase is a negative regulator of K+-Cl−cotransporters

Authors: Tomas, Garzón-Muvdi; Diana, Pacheco-Alvarez; Kenneth B E, Gagnon; Norma, Vázquez; José, Ponce-Coria; Erika, Moreno; Eric, Delpire; +1 Authors

WNK4 kinase is a negative regulator of K+-Cl−cotransporters

Abstract

WNK kinases [with no lysine (K) kinase] are emerging as regulators of several membrane transport proteins in which WNKs act as molecular switches that coordinate the activity of several players. Members of the cation-coupled chloride cotransporters family (solute carrier family number 12) are one of the main targets. WNK3 activates the Na+-driven cotransporters NCC, NKCC1, and NKCC2 and inhibits the K+-driven cotransporters KCC1 to KCC4. WNK4 inhibits the activity of NCC and NKCC1, while in the presence of the STE20-related proline-alanine-rich kinase SPAK activates NKCC1. Nothing is known, however, regarding the effect of WNK4 on the K+-Cl−cotransporters. Using the heterologous expression system of Xenopus laevis oocytes, here we show that WNK4 inhibits the activity of the K+-Cl−cotransporters KCC1, KCC3, and KCC4 under cell swelling, a condition in which these cotransporters are maximally active. The effect of WNK4 requires its catalytic activity because it was lost by the substitution of aspartate 318 for alanine (WNK4-D318A) that renders WNK4 catalytically inactive. In contrast, three different WNK4 missense mutations that cause pseudohypoaldosteronism type II do not affect the WNK4-induced inhibition of KCC4. Finally, we observed that catalytically inactive WNK4-D318A is able to bypass the tonicity requirements for KCC2 and KCC3 activation in isotonic conditions. This effect is enhanced by the presence of catalytically inactive SPAK, was prevented by the presence of protein phosphatase inhibitors, and was not present in KCC1 and KCC4. Our results reveal that WNK4 regulates the activity of the K+-Cl−cotransporters expressed in the kidney.

Keywords

Symporters, Pseudohypoaldosteronism, Blotting, Western, Mutation, Missense, Protein Serine-Threonine Kinases, Xenopus Proteins, Xenopus laevis, K Cl- Cotransporters, Cyclosporine, Oocytes, Animals, Female, Marine Toxins, Oxazoles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
bronze