Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of the New Yo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord

Authors: Mentis, George Z.; Alvarez, Francisco J.; Shneider, Neil A.; Siembab, Valerie C.; O'Donovan, Michael J.;

Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord

Abstract

We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons, and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle‐derived NT3, and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle‐derived factors are not necessary for the initial formation and specificity of the synapses, spindle‐derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice overexpresssing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells.

Keywords

stretch reflex, Medical Sciences, Medical Physiology, Sensitivity and Specificity, Mice, Interneurons, Medicine and Health Sciences, Cell Biology & Physiology, Animals, Homeostasis, motor neuron, Muscle, Skeletal, Motor Neurons, proprioceptor, Afferent Pathways, Neurosciences, Proprioception, Axons, Medical Cell Biology, Rats, Renshaw, Spinal Cord, Medical Neurobiology, Synapses, Physiological Processes, Spinal Nerve Roots, muscle spindle, Neuroscience

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
bronze