Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 2002 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Development of a Human Neuronal Cell Model for Human Immunodeficiency Virus (HIV)-Infected Macrophage-Induced Neurotoxicity: Apoptosis Induced by HIV Type 1 Primary Isolates and Evidence for Involvement of the Bcl-2/Bcl-xL-Sensitive Intrinsic Apoptosis Pathway

Authors: Wei, Chen; Jerrold, Sulcove; Ian, Frank; Salman, Jaffer; Hakan, Ozdener; Dennis L, Kolson;

Development of a Human Neuronal Cell Model for Human Immunodeficiency Virus (HIV)-Infected Macrophage-Induced Neurotoxicity: Apoptosis Induced by HIV Type 1 Primary Isolates and Evidence for Involvement of the Bcl-2/Bcl-xL-Sensitive Intrinsic Apoptosis Pathway

Abstract

ABSTRACTNeuronal apoptosis within the central nervous system (CNS) is a characteristic feature of AIDS dementia, and it represents a common mechanism of neuronal death induced by neurotoxins (e.g., glutamate) released from human immunodeficiency virus (HIV)-infected macrophages (HIV/macrophage-induced neurotoxicity). Neuronal apoptosis may result from activation of the intrinsic (mitochondrial/bcl-2regulated) or extrinsic (death receptor) pathways, although which pathway predominates in CNS HIV infection is unknown. Apoptosis initiated by the intrinsic pathway is typically blocked by antiapoptosis Bcl-2 family proteins, such as Bcl-2 and Bcl-xL, but whether these can block HIV/macrophage-induced neuronal apoptosis is unknown. To determine the potential role of the Bcl-2 family in HIV/macrophage-induced neuronal apoptosis, we developed a unique in vitro model, utilizing the NT2 neuronal cell line, primary astrocytes and macrophages, and primary CNS HIV type 1 (HIV-1) isolates. We validated our model by demonstrating that NT2.N neurons are protected against HIV-infected macrophages byN-methyl-d-aspartate (NMDA) glutamate receptor antagonists, similar to effects seen in primary neurons. We then established stable NT2.N neuronal lines that overexpress Bcl-2 or Bcl-xL (NT2.N/bcl-2 and NT2.N/bcl-xL, respectively) and determined their sensitivity to macrophages infected with primary R5, X4, and R5/X4 HIV-1 isolates. We found that NT2.N/bcl-2 and NT2.N/bcl-xL neurons were resistant to apoptosis induced by either R5, X4, or R5/X4 isolates and that resistance was abrogated by a Bcl-2 antagonist. Thus, the NMDA receptor/bcl-2-regulated apoptotic pathway contributes significantly to HIV/macrophage-induced neuronal apoptosis, and Bcl-2 family proteins protect neurons against the spectrum of primary HIV-1 isolates. Modulation ofbcl-2gene expression may therefore offer adjunctive neuroprotection against development of AIDS dementia.

Related Organizations
Keywords

Neurons, AIDS Dementia Complex, Macrophages, bcl-X Protein, Apoptosis, Receptors, N-Methyl-D-Aspartate, Monocytes, Cell Line, Proto-Oncogene Proteins c-bcl-2, Astrocytes, HIV-1, Humans, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%
gold