Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Clinical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Clinical Medicine
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Clinical Medicine
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2020
License: CC BY
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2020
License: CC BY
Data sources: HAL-CEA
versions View all 7 versions

Proteomic Analysis of Iodinated Contrast Agent-Induced Perturbation of Thyroid Iodide Uptake

Authors: Hichri, Maha; Vassaux, Georges; Guigonis, Jean-Marie; Juhel, Thierry; Graslin, Fanny; Guglielmi, Julien; Pourcher, Thierry; +1 Authors

Proteomic Analysis of Iodinated Contrast Agent-Induced Perturbation of Thyroid Iodide Uptake

Abstract

(1) Background: We recently showed that iodinated contrast media (ICM) reduced thyroid uptake of iodide independently of free iodide through a mechanism different from that of NaI and involving a dramatic and long-lasting decrease in Na/I symporter expression. The present study aimed at comparing the response of the thyroid to ICM and NaI using a quantitative proteomic approach. (2) Methods: Scintiscans were performed on ICM-treated patients. Micro Single-Photon Emission Computed Tomography (microSPECT/CT) imaging was used to assess thyroid uptakes in ICM- or NaI-treated mice and their response to recombinant human thyroid-stimulating hormone. Total thyroid iodide content and proteome was determined in control, NaI-, or ICM-treated animals. (3) Results: The inhibitory effect of ICM in patients was selectively observed on thyroids but not on salivary glands for up to two months after a systemic administration. An elevated level of iodide was observed in thyroids from NaI-treated mice but not in those from ICM animals. Exposure of the thyroid to NaI modulates 15 cellular pathways, most of which are also affected by ICM treatment (including the elF4 and P706SK cell signaling pathway and INSR identified as an upstream activator in both treatments). In addition, ICM modulates 16 distinct pathways and failed to affect thyroid iodide content. Finally, administration of ICM reduces thyroid-stimulating hormone (TSH) receptor expression which results in a loss of TSH-induced iodide uptake by the thyroid. (4) Conclusions: Common intracellular mechanisms are involved in the ICM- and NaI-induced reduction of iodide uptake. However, ICM fails to affect thyroid iodide content which suggests that the modulation of these common pathways is triggered by separate effectors. ICM also modulates numerous distinct pathways which may account for its long-lasting effect on thyroid uptake. These observations may have implications in the management of patients affected by differentiated thyroid carcinomas who have been exposed to ICM. They also provide the basis for the utilization of ICM-based compounds in radioprotection of the thyroid.

Keywords

[SDV] Life Sciences [q-bio], proteomics, microSPECT, CT imaging, free iodide, microSPECT/CT imaging, iodinated contrast media, Article, thyroid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
gold