Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The FASEB Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Control of pelage hair follicle development and cycling by complex interactions between follistatin and activin

Authors: Motonobu, Nakamura; Martin M, Matzuk; Bernhard, Gerstmayer; Andreas, Bosio; Roland, Lauster; Yoshiki, Miyachi; Sabine, Werner; +1 Authors

Control of pelage hair follicle development and cycling by complex interactions between follistatin and activin

Abstract

Members of the transforming growth factor β/bone morphogenetic protein (TGF‐β/BMP) family are involved in the control of hair follicle (HF) morphogenesis and cycling. The activities of several members of this family (activins and BMP‐2, ‐4, ‐7, and ‐11) are controlled by antagonists such as follistatin. Because follistatin‐deficient mice show abnormalities in vibrissae development, we explored the role of follistatin and activin in pelage HF development and cycling. We show here that during HF development follistatin mRNA was prominently expressed by hair matrix and outer root sheath keratinocytes as well as by interfollicular epidermal cells, whereas activin βA mRNA was mainly expressed in dermal papilla cells. Compared with age‐matched wild‐type controls, both follistatin knockout mice and activin βA transgenic mice showed a significant retardation of HF morphogenesis. Treatment of wild‐type embryonic skin explants with follistatin protein stimulated HF development. This effect was inhibited by addition of recombinant activin A protein. Activin βA transgenic mice demonstrated retardation of catagen entry, down‐regulation of BMP‐2, and up‐regulation of expression of its antagonist matrix GLA protein. These observations suggest that follistatin and activin interaction plays an important role in both HF development and cycling, possibly in part by regulating expression of BMP‐2 and its antagonist.

Keywords

Keratinocytes, Mice, Knockout, Extracellular Matrix Proteins, Follistatin, Periodicity, Activin Receptors, Calcium-Binding Proteins, Bone Morphogenetic Protein 2, Mice, Transgenic, Models, Biological, Epithelium, Mesoderm, Mice, Inbred C57BL, Mice, Organ Culture Techniques, Bone Morphogenetic Proteins, Animals, Hair Follicle, Cell Division, Inhibin-beta Subunits

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%