Conservation of recombination hotspots in yeast
Conservation of recombination hotspots in yeast
Meiotic recombination does not occur randomly along a chromosome, but instead tends to be concentrated in small regions, known as “recombination hotspots.” Recombination hotspots are thought to be short-lived in evolutionary time due to their self-destructive nature, as gene conversion favors recombination-suppressing alleles over recombination-promoting alleles during double-strand repair. Consistent with this expectation, hotspots in humans are highly dynamic, with little correspondence in location between humans and chimpanzees. Here, we identify recombination hotspots in two lineages of the yeast Saccharomyces paradoxus, and compare their locations to those found previously in Saccharomyces cerevisiae . Surprisingly, we find considerable overlap between the two species, despite the fact that they are at least 10 times more divergent than humans and chimpanzees. We attribute this unexpected result to the low frequency of sex and outcrossing in these yeasts, acting to reduce the population genetic effect of biased gene conversion. Traces from two other signatures of recombination, namely high mutagenicity and GC-biased gene conversion, are consistent with this interpretation. Thus, recombination hotspots are not inevitably short-lived, but rather their persistence through evolutionary time will be determined by the frequency of outcrossing events in the life cycle.
- Imperial College London United Kingdom
- Wellcome Trust United Kingdom
- University of Oregon United States
- Wellcome Sanger Institute United Kingdom
Evolution, Molecular, Recombination, Genetic, Base Composition, Saccharomyces, Haplotypes, Species Specificity, Mutation, Chromosomes, Fungal
Evolution, Molecular, Recombination, Genetic, Base Composition, Saccharomyces, Haplotypes, Species Specificity, Mutation, Chromosomes, Fungal
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
