Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transgenic Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Transgenic Research
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Growth retardation and hair loss in transgenic mice overexpressing human H-ferritin gene

Authors: Sumitaka, Hasegawa; Kazutoshi, Harada; Yukie, Morokoshi; Satoshi, Tsukamoto; Takako, Furukawa; Tsuneo, Saga;

Growth retardation and hair loss in transgenic mice overexpressing human H-ferritin gene

Abstract

H-ferritin (HF) is a core subunit of the iron storage protein ferritin, and plays a central role in the regulation of cellular iron homeostasis. Recent studies revealed that ferritin and HF are involved in a wide variety of iron-independent functions, including regulating biological processes during physiological and pathological conditions, and can be overexpressed in some human diseases. To investigate the in vivo function of HF, we generated transgenic (tg) mice overexpressing the human HF gene (hHF-tg). We established two independent hHF-tg mouse lines. Although both lines of hHF-tg mice were viable, they showed reduced body size compared to wild-type (WT) mice at 4-12 weeks of age. Serum iron concentration and blood parameters of hHF-tg mice such as hemoglobin and red blood cell counts were comparable to those of WT mice. At 3-5 weeks of age, hHF-tg mice exhibited temporary loss of coat hair on the trunk, but not on the head or face. Histological analyses revealed that although initial hair development was normal, hHF-tg mice had epidermal hyperplasia with hyperkeratosis, dilated hair follicles, bended hair shafts and keratinous debris during the hairless period. In conclusion, we showed that hHF-tg mice exhibited mild growth retardation and temporary hairless phenotype. Our findings highlight the physiological roles of HF and demonstrate that hHF-tg mice are useful for understanding the in vivo functions of HF.

Keywords

Hyperplasia, Iron, Body Weight, Gene Expression, Alopecia, Mice, Transgenic, Iron Deficiencies, Keratosis, Mice, Apoferritins, Erythrocyte Count, Animals, Humans, Epidermis, Hair Follicle

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average