Catalytic mechanism of yeast adenosine 5'-monophosphate deaminase. Zinc content, substrate specificity, pH studies, and solvent isotope effects
doi: 10.1021/bi00073a011
pmid: 8504099
Catalytic mechanism of yeast adenosine 5'-monophosphate deaminase. Zinc content, substrate specificity, pH studies, and solvent isotope effects
Adenosine 5'-monophosphate (AMP) deaminase from baker's yeast is an allosteric enzyme containing a single AMP binding site and two ATP regulatory sites per polypeptide [Merkler, D. J., & Schramm, V. L. (1990) J. Biol Chem. 265, 4420-4426]. The enzyme contains 0.98 +/- 0.17 zinc atom per subunit. The X-ray crystal structure for mouse adenosine deaminase shows zinc in contact with the attacking water nucleophile using purine riboside as a transition-state inhibitor [Wilson, D. K., Rudolph, F. B., & Quiocho, F. A. (1991) Science 252, 1278-1284]. Alignment of the amino acid sequence for yeast AMP deaminase with that for mouse adenosine deaminase demonstrates conservation of the amino acids known from the X-ray crystal structure to bind to the zinc and to a transition-state analogue. On the basis of these similarities, yeast AMP deaminase is also proposed to use a Zn(2+)-activated water molecule to attack C6 of AMP with the displacement of NH3. The pKm and pKi profiles for AMP and a competitive inhibitor overlap in a bell-shaped curve with pKa values of 7.0 and 7.4. This pattern is characteristic of a rapid equilibrium between AMP and the enzyme, thus confirming the rapid equilibrium random kinetic patterns [Merkler, D. J., Wali, A. S., Taylor, J., Schramm, V. L. (1989) J. Biol. Chem. 264, 21422-21430]. The Vmax of the reaction requires one unprotonated and one protonated group with pKa values of 6.4 +/- 0.2 and 7.7 +/- 0.3, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
- Albert Einstein College of Medicine United States
Binding Sites, Molecular Structure, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Deuterium, Adenosine Monophosphate, Catalysis, AMP Deaminase, Substrate Specificity, Kinetics, Zinc, Solvents
Binding Sites, Molecular Structure, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Deuterium, Adenosine Monophosphate, Catalysis, AMP Deaminase, Substrate Specificity, Kinetics, Zinc, Solvents
4 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
