Powered by OpenAIRE graph

Catalytic mechanism of yeast adenosine 5'-monophosphate deaminase. Zinc content, substrate specificity, pH studies, and solvent isotope effects

Authors: D J, Merkler; V L, Schramm;

Catalytic mechanism of yeast adenosine 5'-monophosphate deaminase. Zinc content, substrate specificity, pH studies, and solvent isotope effects

Abstract

Adenosine 5'-monophosphate (AMP) deaminase from baker's yeast is an allosteric enzyme containing a single AMP binding site and two ATP regulatory sites per polypeptide [Merkler, D. J., & Schramm, V. L. (1990) J. Biol Chem. 265, 4420-4426]. The enzyme contains 0.98 +/- 0.17 zinc atom per subunit. The X-ray crystal structure for mouse adenosine deaminase shows zinc in contact with the attacking water nucleophile using purine riboside as a transition-state inhibitor [Wilson, D. K., Rudolph, F. B., & Quiocho, F. A. (1991) Science 252, 1278-1284]. Alignment of the amino acid sequence for yeast AMP deaminase with that for mouse adenosine deaminase demonstrates conservation of the amino acids known from the X-ray crystal structure to bind to the zinc and to a transition-state analogue. On the basis of these similarities, yeast AMP deaminase is also proposed to use a Zn(2+)-activated water molecule to attack C6 of AMP with the displacement of NH3. The pKm and pKi profiles for AMP and a competitive inhibitor overlap in a bell-shaped curve with pKa values of 7.0 and 7.4. This pattern is characteristic of a rapid equilibrium between AMP and the enzyme, thus confirming the rapid equilibrium random kinetic patterns [Merkler, D. J., Wali, A. S., Taylor, J., Schramm, V. L. (1989) J. Biol. Chem. 264, 21422-21430]. The Vmax of the reaction requires one unprotonated and one protonated group with pKa values of 6.4 +/- 0.2 and 7.7 +/- 0.3, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Related Organizations
Keywords

Binding Sites, Molecular Structure, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Deuterium, Adenosine Monophosphate, Catalysis, AMP Deaminase, Substrate Specificity, Kinetics, Zinc, Solvents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%