Unregulated Insulin Secretion by Pancreatic Beta Cells in Hyperinsulinism/Hyperammonemia Syndrome: Role of Glutamate Dehydrogenase, ATP-Sensitive Potassium Channel, and Nonselective Cation Channel
pmid: 16492972
Unregulated Insulin Secretion by Pancreatic Beta Cells in Hyperinsulinism/Hyperammonemia Syndrome: Role of Glutamate Dehydrogenase, ATP-Sensitive Potassium Channel, and Nonselective Cation Channel
The hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by "gain of function" of glutamate dehydrogenase (GDH). Several missense mutations have been found; however, cell behaviors triggered by the excessive GDH activity have not been fully demonstrated. This study was aimed to clarify electrophysiological mechanisms underlying the dysregulated insulin secretion in pancreatic beta cells with GDH mutations. GDH kinetics and insulin secretion were measured in MIN6 cells overexpressing the G446D and L413V. Membrane potentials and channel activity were recorded under the perforated-patch configuration that preserved intracellular environments. In mutant MIN6 cells, sensitivity of GDH to guanosine triphosphate (GTP) was reduced and insulin secretion at low glucose concentrations was enhanced. The basal GDH activity was elevated in L413V bearing a mutation in the antenna-like structure. The L413V cells were depolarized without glucose, often accompanying by repetitive Ca2+ firings. The depolarization was maintained in the presence of adenosine triphosphate (ATP) and disappeared by depleting ATP, suggesting that the depolarization depended on intracellular ATP. In L413V cells, the ATP-sensitive potassium channel (K(ATP) channel) was suppressed and the nonselective cation channel (NSCC) was potentiated, while sensitivity of the channels to their specific blockers or agonists was not impaired. These data suggest that the L413V cells increase the intracellular ATP/adenosine diphosphate (ADP) ratio, which in turn causes sustained depolarization not only by closure of the K(ATP) channel, but also by opening of the NSCC. The resultant activation of the voltage-gated Ca2+ channel appears to induce hyperinsulinism. The present study provides evidence that multiple channels cooperate in unregulated insulin secretion in pancreatic beta cells of the HI/HA syndrome.
- Osaka University Japan
- Osaka Gakuin University Japan
- Osaka Metropolitan University Japan
Patch-Clamp Techniques, Potassium Channels, Syndrome, Ion Channels, Cell Line, Mice, Adenosine Triphosphate, Glutamate Dehydrogenase, Hyperinsulinism, Insulin-Secreting Cells, Animals, Humans, Hyperammonemia, Insulin
Patch-Clamp Techniques, Potassium Channels, Syndrome, Ion Channels, Cell Line, Mice, Adenosine Triphosphate, Glutamate Dehydrogenase, Hyperinsulinism, Insulin-Secreting Cells, Animals, Humans, Hyperammonemia, Insulin
14 Research products, page 1 of 2
- 2001IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2010IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2000IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
