Fly visual course control: behaviour, algorithms and circuits
doi: 10.1038/nrn3799
pmid: 25116140
Fly visual course control: behaviour, algorithms and circuits
Understanding how the brain controls behaviour is undisputedly one of the grand goals of neuroscience research, and the pursuit of this goal has a long tradition in insect neuroscience. However, appropriate techniques were lacking for a long time. Recent advances in genetic and recording techniques now allow the participation of identified neurons in the execution of specific behaviours to be interrogated. By focusing on fly visual course control, I highlight what has been learned about the neuronal circuit modules that control visual guidance in Drosophila melanogaster through the use of these techniques.
- Max Planck Society Germany
Behavior, Animal, Diptera, Animals, Brain, Learning, Nerve Net, Algorithms, Vision, Ocular
Behavior, Animal, Diptera, Animals, Brain, Learning, Nerve Net, Algorithms, Vision, Ocular
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).129 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
