Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Trafficarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Traffic
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Traffic
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Traffic
Article . 2010
versions View all 2 versions

HCMV‐Encoded Glycoprotein M (UL100) Interacts with Rab11 Effector Protein FIP4

Authors: Magdalena A, Krzyzaniak; Michael, Mach; William J, Britt;

HCMV‐Encoded Glycoprotein M (UL100) Interacts with Rab11 Effector Protein FIP4

Abstract

Abstract The envelope of human cytomegalovirus (HCMV) consists of a large number of glycoproteins. The most abundant glycoprotein in the HCMV envelope is the glycoprotein M (UL100), which together with glycoprotein N (UL73) form the gM/gN protein complex. Using yeast two‐hybrid screening, we found that the gM carboxy‐terminal cytoplasmic tail (gM‐CT) interacts with FIP4, a Rab11‐GTPase effector protein. Depletion of FIP4 expression in HCMV‐infected cells resulted in a decrease in infectious virus production that was also associated with an alteration of the HCMV assembly compartment (AC) phenotype. A similar phenotype was also observed in HCMV‐infected cells that expressed dominant negative Rab11(S25N). Recently, it has been shown that FIP4 interactions with Rab11 and additionally with Arf6/Arf5 are important for the vesicular transport of proteins in the endosomal recycling compartment (ERC) and during cytokinesis. Surprisingly, FIP4 interaction with gM‐CT limited binding of FIP4 with Arf5/Arf6; however, FIP4 interaction with gM‐CT did not prevent recruitment of Rab11 into the ternary complex. These data argued for a contribution of the ERC during cytoplasmic envelopment of HCMV and showed a novel FIP4 function independent of Arf5 or Arf6 activity.

Related Organizations
Keywords

Cytoplasm, Cytomegalovirus, Membrane Proteins, Fibroblasts, Endoplasmic Reticulum, Transfection, Virus Replication, Polymerase Chain Reaction, Cell Line, Protein Transport, Viral Envelope Proteins, Two-Hybrid System Techniques, Chlorocebus aethiops, Animals, Humans, Electrophoresis, Polyacrylamide Gel, Carrier Proteins, Fluorescence Recovery After Photobleaching, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
bronze