Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Protein C Concentrate Controls Leukocyte Recruitment during Inflammation and Improves Survival during Endotoxemia after Efficient in Vivo Activation

Authors: David, Frommhold; Julia, Tschada; Natascha, Braach; Kirsten, Buschmann; Axel, Doerner; Johanna, Pflaum; Marie-Sophie, Stahl; +6 Authors

Protein C Concentrate Controls Leukocyte Recruitment during Inflammation and Improves Survival during Endotoxemia after Efficient in Vivo Activation

Abstract

Anti-inflammatory properties of protein C (PC) concentrate are poorly studied compared to activated protein C, although PC is suggested to be safer in clinical use. We investigated how PC interferes with the leukocyte recruitment cascade during acute inflammation and its efficacy during murine endotoxemia. We found that similar to activated protein infusion, intravenous PC application reduced leukocyte recruitment in inflamed tissues in a dose- and time-dependent manner. During both tumor necrosis factor-α induced and trauma-induced inflammation of the cremaster muscle, intravital microscopy revealed that leukocyte adhesion and transmigration, but not rolling, were profoundly inhibited by 100 U/kg PC. Moreover, PC blocked leukocyte emigration into the bronchoalveolar space during lipopolysaccharide (LPS) induced acute lung injury. PC was efficiently activated in a murine endotoxemia model, which reduced leukocyte infiltration of organs and strongly improved survival (75% versus 25% of control mice). Dependent on the inflammatory model, PC provoked a significant inhibition of leukocyte recruitment as early as 1 hour after administration. PC-induced inhibition of leukocyte recruitment during acute inflammation critically involves thrombomodulin-mediated PC activation, subsequent endothelial PC receptor and protease-activated receptor-1-dependent signaling, and down-regulation of intercellular adhesion molecule 1 leading to reduced endothelial inflammatory response. We conclude that during acute inflammation and sepsis, PC is a fast acting and effective therapeutic approach to block leukocyte recruitment and improve survival.

Keywords

Lipopolysaccharides, Dose-Response Relationship, Drug, Acute Lung Injury, Anti-Inflammatory Agents, Endothelial Protein C Receptor, Intercellular Adhesion Molecule-1, Endotoxemia, Lymphocyte Function-Associated Antigen-1, Muscle, Smooth, Vascular, Anti-Bacterial Agents, Mice, Inbred C57BL, Chemotaxis, Leukocyte, Mice, Antigens, CD, Cell Movement, Cell Adhesion, Leukocytes, Animals, Cytokines, Escherichia coli Infections

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%
hybrid