Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Loss of Estrogen Receptor 1 Enhances Cervical Cancer Invasion

Authors: Yali, Zhai; Guido T, Bommer; Ying, Feng; Alexandra B, Wiese; Eric R, Fearon; Kathleen R, Cho;

Loss of Estrogen Receptor 1 Enhances Cervical Cancer Invasion

Abstract

If left untreated, some cervical high-grade squamous intraepithelial lesions will progress to invasive squamous cell carcinoma (SCC), but the molecular events conferring invasive potential remain poorly defined. In prior work, we identified 48 genes that were down-regulated in SCCs compared with high-grade squamous intraepithelial lesions and normal squamous epithelia. In this study, a functional screening strategy was used to identify which of these genes regulate cervical cancer cell invasion. Two independent squamous epithelial cell lines were transduced with a library of short hairpin RNAs targeting the differentially expressed genes and tested for invasion of the chick chorioallantoic membrane. PCR was used to recover specific short hairpin RNAs from cells that invaded the chorioallantoic membrane. Constructs targeting estrogen receptor 1 (ESR1) were highly enriched in the invasive cells. The short hairpin RNA-mediated inhibition of ESR1 in SCC- and precancer-derived cell lines increased invasiveness in both in vivo and in vitro assays. Conversely, restoration of ESR1 expression in ESR1-negative cervical cancer cells reduced cell invasiveness. Loss of ESR1 expression was found to accompany cervical cancer progression in an analysis of primary normal cervix, low grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions, and SCC specimens. Molecular mechanisms underlying down-regulation of ESR1 in invasive cervical carcinomas appear to be complex and likely heterogeneous. Our findings indicate that loss of ESR1 has a major role in mediating cervical cancer invasion and progression.

Related Organizations
Keywords

Estrogen Receptor alpha, Polycomb Repressive Complex 2, Uterine Cervical Neoplasms, Chick Embryo, DNA-Binding Proteins, Cell Line, Tumor, Gene Knockdown Techniques, Carcinoma, Squamous Cell, Disease Progression, Animals, Humans, Enhancer of Zeste Homolog 2 Protein, Female, Neoplasm Invasiveness, RNA, Small Interfering, Papillomaviridae, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
hybrid
Related to Research communities
Cancer Research