Genetic and pharmacological evidence that a retinoic acid cannot be the RXR-activating ligand in mouse epidermis keratinocytes
Genetic and pharmacological evidence that a retinoic acid cannot be the RXR-activating ligand in mouse epidermis keratinocytes
Using genetic and pharmacological approaches, we demonstrate that both RARγ/RXRα heterodimers involved in repression events, as well as PPARβ(δ)/RXRα heterodimers involved in activation events, are cell-autonomously required in suprabasal keratinocytes for the generation of lamellar granules (LG), the organelles instrumental to the formation of the skin permeability barrier. In activating PPARβ(δ)/RXRα heterodimers, RXRα is transcriptionally active as its AF-2 activation function is required and can be inhibited by an RXR-selective antagonist. Within repressing RARγ/RXRα heterodimers, induction of the transcriptional activity of RXRα is subordinated to the addition of an agonistic ligand for RARγ. Thus, the ligand that possibly binds and activates RXRα heterodimerized with PPARβ(δ) cannot be a retinoic acid, as it would also bind RARγ and relieve the RARγ-mediated repression, thereby yielding abnormal LGs. Our data also demonstrate for the first time that subordination of RXR transcriptional activity to that of its RAR partner plays a crucial role in vivo, because it allows RXRs to act concomitantly, within the same cell, as heterodimerization partners for repression, as well as for activation events in which they are transcriptionally active.
- Institute of Science Tokyo Japan
- French National Centre for Scientific Research France
- Collège de France France
- Inserm France
- Institut National de la Santé et la Recherche Médicale France
[SDV] Life Sciences [q-bio], Keratinocytes, Mice, Retinoid X Receptors, Epidermal Cells, Animals, Tretinoin, Epidermis, Ligands
[SDV] Life Sciences [q-bio], Keratinocytes, Mice, Retinoid X Receptors, Epidermal Cells, Animals, Tretinoin, Epidermis, Ligands
39 Research products, page 1 of 4
- 2017IsRelatedTo
- 2014IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2002IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).110 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
