Preliminary X-ray crystallographic studies of mouse UPR responsive protein P58(IPK) TPR fragment
Preliminary X-ray crystallographic studies of mouse UPR responsive protein P58(IPK) TPR fragment
Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), which can promote protein folding and misfolded protein degradation and attenuate protein translation and protein translocation into the ER. P58(IPK) has been proposed to function as a molecular chaperone to maintain protein-folding homeostasis in the ER under normal and stressed conditions. P58(IPK) contains nine TPR motifs and a C-terminal J-domain within its primary sequence. To investigate the mechanism by which P58(IPK) functions to promote protein folding within the ER, a P58(IPK) TPR fragment without the C-terminal J-domain was crystallized. The crystals diffract to 2.5 A resolution using a synchrotron X-ray source. The crystals belong to space group P2(1), with unit-cell parameters a = 83.53, b = 92.75, c = 84.32 A, alpha = 90.00, beta = 119.36, gamma = 90.00 degrees. There are two P58(IPK) molecules in the asymmetric unit, which corresponds to a solvent content of approximately 60%. Structure determination by MAD methods is under way.
- University of Alabama at Birmingham United States
- New York University United States
Mice, Protein Folding, Protein Conformation, Animals, Electrophoresis, Polyacrylamide Gel, Cloning, Molecular, HSP40 Heat-Shock Proteins, Crystallization, Crystallography, X-Ray
Mice, Protein Folding, Protein Conformation, Animals, Electrophoresis, Polyacrylamide Gel, Cloning, Molecular, HSP40 Heat-Shock Proteins, Crystallization, Crystallography, X-Ray
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
