Human eosinophils and neutrophils biosynthesize novel 15-lipoxygenase metabolites from 1-linoleoyl-glycerol and N-linoleoyl-ethanolamine
handle: 20.500.14243/502654
Human eosinophils and neutrophils biosynthesize novel 15-lipoxygenase metabolites from 1-linoleoyl-glycerol and N-linoleoyl-ethanolamine
Abstract BACKGROUND The endocannabinoids 2-AG and AEA are lipids regulating many physiological processes, notably inflammation. The endocannabinoidome includes other monoacylglycerols (MAG) and N-acyl-ethanolamines (NAE) such as 1-linoleoyl-glycerol (1-LG) and N-linoleoyl-ethanolamine (LEA). Endocannabinoid hydrolysis inhibitors are now being tested as potential anti-inflammatory agents. By increasing MAG and/or NAE levels, these inhibitors will likely increase the levels of their metabolites. Herein we investigated whether 1-LG and LEA were substrates for the 15-lipoxygenase pathway, which is strongly involved in asthma and its severity. We thus assessed how human eosinophils and neutrophils biosynthesized the 15-lipoxygenase metabolites of 1-LG and LEA. Linoleic acid (LA), a well-documented substrate of 15-lipoxygenases, was used as positive control. RESULTS We synthesized the putative 15-lipoxygenase metabolites of 1-LG and LEA using Novozym435 and soybean lipoxygenase. Eosinophils, which express the 15-lipoxygenase-1, metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was almost complete after 5 minutes. Substrate preference of eosinophils was LA>LEA>1-LG. Human neutrophils, which express the 15-lipoxygenase-2, also metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was maximal after 30 seconds. Substrate preference was LA≫1-LG>LEA. Importantly, the new 15-lipoxygenase metabolites we disclose were found in tissues from humans and mice. CONCLUSIONS We successfully showed that human eosinophils and neutrophils transforms 1-LG and LEA into novel 15-lipoxygenase metabolites. How these new metabolites modulate the inflammatory cascade is now being explored.
- National Research Council Italy
- Istituto di Chimica Biomolecolare Italy
- Université Laval Canada
endocannabinoids, eosinophilis
endocannabinoids, eosinophilis
4 Research products, page 1 of 1
- 2015IsAmongTopNSimilarDocuments
- 1991IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
