Powered by OpenAIRE graph

Effects of C-type natriuretic peptide on ionic currents in mouse sinoatrial node: a role for the NPR-C receptor

Authors: Robert A, Rose; Alan E, Lomax; Colleen S, Kondo; Madhu B, Anand-Srivastava; Wayne R, Giles;

Effects of C-type natriuretic peptide on ionic currents in mouse sinoatrial node: a role for the NPR-C receptor

Abstract

The effects of C-type natriuretic peptide (CNP) on heart rate and ionic currents were demonstrated by recording the ECG from adult mice and performing voltage-clamp experiments on single sinoatrial (SA) node cells isolated from mouse heart. The selective natriuretic peptide type C receptor (NPR-C) agonist cANF (10–7M) significantly decreased heart rate in the presence of isoproterenol (5 × 10–9M), as indicated by an increase in the R-R interval of ECGs obtained from Langendorff-perfused hearts. Voltage-clamp measurements in enzymatically isolated single pacemaker myocytes revealed that CNP (10–8M) and cANF (10–8M) significantly inhibited L-type Ca2+current [ ICa(L)]. These findings suggest that the CNP effect on this current is mediated by NPR-C. Further support for an NPR-C-mediated inhibition of ICa(L)in SA node myocytes was obtained by altering the functional coupling between the G protein Giand NPR-C. In these experiments, a “Gi-activator peptide,” which consists of a 17-amino acid segment of NPR-C containing a specific Giprotein-activator sequence, was dialyzed into SA node myocytes. This peptide decreased ICa(L)significantly, suggesting that NPR-C activation can result in a reduction in ICa(L)when CNP is bound and the Giprotein pathway is activated. This effect of CNP appears to be selective for ICa(L), because the hyperpolarization-activated current was unaffected by CNP or cANF. These results provide the first demonstration that CNP has a negative chronotropic effect on heart rate and suggest that this effect is mediated by selectively activating NPR-C and reducing ICa(L)through coupling to Giprotein.

Related Organizations
Keywords

Male, Calcium Channels, L-Type, Electric Conductivity, Natriuretic Peptide, C-Type, Peptide Fragments, Mice, Inbred C57BL, Electrocardiography, Mice, Guanylate Cyclase, Heart Rate, Animals, Myocytes, Cardiac, Receptors, Atrial Natriuretic Factor, Sinoatrial Node

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%