Characterization of thrombin/factor Xa inhibitors in Rhizoma Chuanxiong through UPLC-MS-based multivariate statistical analysis
Characterization of thrombin/factor Xa inhibitors in Rhizoma Chuanxiong through UPLC-MS-based multivariate statistical analysis
Abstract Background The dry root and rhizome of Ligusticum chuanxiong Hort., or Chuanxiong, has been used as a blood-activating and stasis-removing traditional Chinese medicine for 1000 years. Our previous studies have shown the inhibitory activity on platelet and thrombin (THR) of Chuanxiong. THR and factor Xa (FXa) play significant roles in the coagulation cascade and their inhibitors are of valuable in the treatment of thromboembolic diseases. The aim of the present study is to screen THR and FXa inhibitors from Chuanxiong. Methods Four extracts [ethyl acetate (EA), butanol (BA) and remained extract (RE) from 75% ethanol extract, and water extract (WE)] of Chuanxiong were prepared, and their THR/FXa inhibitory activities were assessed in vitro. Following silica-gel column chromatography (SC), the active EA extract and BA extract was further partitioned, respectively. Their active fractions (EA-SC1 to EA-SC5; BA-SC1 to BA-SC5) were obtained and analyzed by LC–MS. After modeling by the principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA), the specific marker compounds were predicted and identified. Their enzyme inhibitory was assessed in vitro and interactions with THR/FXa were investigated by molecular docking analysis. Results Chuanxiong EA extract showed strong activity against THR and BA extract was more effective in inhibiting FXa activity, and their fractions exhibited obvious difference in enzyme inhibitory activity. Furthermore, marker compounds a–h were predicted by PCA and OPLS-DA, and their chemical structures were identified. Among them, senkyunolide A, Z-ligustilide, ferulic acid and senkyunolide I (IC50 was determined as 0.77 mM) with potential THR inhibitory activity, as well as isochlorogenic acid A with FXa inhibitory activity were screened out. It was found that the four components could interact with the active site of THR, and the binding energy was lower than − 5 kcal/mol. Isochlorogenic acid A were bound to the active site of FXa, and the binding energy was − 9.39 kcal/mol. The IC50 was determined as 0.56 mM. Conclusions THR/FXa inhibitory components in different extracts of Chuanxiong were successfully characterized by the method of enzyme inhibition activity assays with ultra performance liquid chromatography-quadrupole time of flight mass spectrometry-based multivariate statistical analysis.
- University of Macau Macao
- Hebei University China (People's Republic of)
- Chinese Academy of Medical Sciences & Peking Union Medical College China (People's Republic of)
- Chongqing University China (People's Republic of)
- Zhejiang Chinese Medical University China (People's Republic of)
Other systems of medicine, Research, Factor Xa, Molecular docking, Thrombin, Enzyme inhibitor, Chuanxiong, Multivariate statistical analysis, RZ201-999
Other systems of medicine, Research, Factor Xa, Molecular docking, Thrombin, Enzyme inhibitor, Chuanxiong, Multivariate statistical analysis, RZ201-999
3 Research products, page 1 of 1
- 2008IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
