Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mammalian Genomearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mammalian Genome
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Mammalian Genome
Article . 1995
versions View all 2 versions

Analysis of cDNA sequences from mouse testis

Authors: S M, Kerr; S, Vambrie; S J, McKay; H J, Cooke;
Abstract

Few mammalian proteins involved in chromosome structure and function during meiosis have been characterized. As an approach to identify such proteins, cDNA clones expressed in mouse testis were analyzed by sequencing and Northern blotting. Various cDNA library screening methods were used to obtain the clones. First, hybridization with cDNA from testis or brain allowed selection of either negative or differentially expressed plaques. Second, positive plaques were identified by screening with polyclonal antisera to prepubertal testis nuclear proteins. Most clones were selected by negative hybridization to correspond to a low abundance class of mRNAs. A PCR-based solid-phase DNA sequencing protocol was used to rapidly obtain 306 single-pass cDNA sequences totaling more than 104 kb. Comparison with nucleic acid and protein databases showed that 56% of the clones have no significant match to any previously identified sequence. Northern blots indicate that many of these novel clones are testis-enriched in their expression. Further evidence that the screening strategies were appropriate is that a high proportion of the clones which do have a match encode testis-enriched or meiosis-specific genes, including the mouse homolog of a rat gene that encodes a synaptonemal complex protein.

Keywords

Male, DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Proteins, RNA Nucleotidyltransferases, Polymerase Chain Reaction, Mice, Spermatocytes, Protein Biosynthesis, Sequence Homology, Nucleic Acid, Testis, Animals, Amino Acid Sequence, RNA Helicases, DNA Primers, Gene Library, Information Systems, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%