Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Epidemiology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Epidemiology Biomarkers & Prevention
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Genetic Polymorphisms in Xenobiotic Clearance Genes and Their Influence on Disease Expression in Hereditary Nonpolyposis Colorectal Cancer Patients

Authors: Talseth, Bente A.; Meldrum, Cliff; Suchy, Janina; Kurzawski, Grzegroz; Lubinski, Jan; Scott, Rodney J.;

Genetic Polymorphisms in Xenobiotic Clearance Genes and Their Influence on Disease Expression in Hereditary Nonpolyposis Colorectal Cancer Patients

Abstract

Abstract Background: Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germ-line mutations in DNA mismatch repair genes. There is considerable variation in disease expression that cannot be explained by genotype/phenotype correlation, which is likely to be the result of polymorphic modifier genes. One candidate group of modifiers is the xenobiotic clearance enzyme genes that encode CYP1A1, GSTM1, GSTT1, GSTP1, and NAT2. Alterations in these xenobiotic clearance genes can potentially influence the host response to carcinogen exposure and thereby alter cancer risk. We have investigated eight polymorphisms in xenobiotic clearance genes to assess the effect on the risk of disease in mutation positive HNPCC patients. Methods: DNA samples from 220 mutation-positive HNPCC participants (86 Australian and 134 Polish) were genotyped for single nucleotide polymorphisms (SNP) in CYP1A1, GSTM1, GSTT1, GSTP1, and NAT2. The association between the SNPs and disease characteristics, disease expression and age of diagnosis of colorectal cancer (CRC), was tested with Pearson's χ2 and Kaplan-Meier survival analysis. Results: The HNPCC population displays a significant difference in the genotype frequency distribution between CRC patients and unaffected mismatch repair gene mutation carriers for the CYP1A1 SNP where the CRC patients harbor more of the mutant genotype. Conclusions: Evidence from this study is not conclusive, but our data suggest that the CYP1A1 influences disease expression in individuals with HNPCC. (Cancer Epidemiol Biomarkers Prev 2006;15(11):2307–10)

Keywords

Risk, Polymorphism, Genetic, DNA Repair, Arylamine N-Acetyltransferase, Base Pair Mismatch, 610, colorectal cancer, DNA, Colorectal Neoplasms, Hereditary Nonpolyposis, Polymorphism, Single Nucleotide, Xenobiotics, Gene Expression Regulation, Neoplastic, genetic polymorphisms, Mutation, Humans, xenobiotic clearance genes, Colorectal Neoplasms, Germ-Line Mutation, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
bronze