Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase.
Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase.
We have identified cDNA clones encoding a chondroitin sulfate proteoglycan of rat brain (previously designated 3F8 and now named phosphacan) that binds to neurons and neural cell-adhesion molecules. A sequence of 1616 amino acids deduced from a 4.8-kb open reading frame contains the N-terminal amino acid sequence of the 3F8 core glycoprotein as well as four internal CNBr, tryptic, and endoproteinase Lys-C peptide sequences from the proteoglycan. The deduced amino acid sequence, beginning with a 24-amino acid signal peptide, reveals an N-terminal domain of 255 amino acids homologous to carbonic anhydrases. The entire amino acid sequence deduced from our cDNA clones corresponds to the extracellular portion of a human receptor-type protein tyrosine phosphatase (RPTP zeta/beta) with which it has 76% identity, and the proteoglycan may represent an mRNA splicing variant of the larger transmembrane protein. RNA analysis demonstrated that a probe to the N-terminal carbonic anhydrase domain of the proteoglycan hybridizes with rat brain mRNA of 9.5, 8.4, and 6.4 kb, whereas probes to the phosphatase domains hybridize with only the 9.5-kb message and with the 6.4-kb message (which corresponds to a previously identified variant of the transmembrane protein in which half of the extracellular domain is deleted). The 30 N-terminal amino acids of the 3H1 chondroitin/keratan sulfate proteoglycan of brain are identical to those of the 3F8 proteoglycan, and six internal tryptic peptide sequences also matched those found in sequenced peptides of the 3F8 proteoglycan and/or amino acid sequences deduced from the cDNA clones. We therefore conclude that the 3H1 chondroitin/keratan sulfate proteoglycan and the 3F8 chondroitin sulfate proteoglycan represent glycosylation and possible extracellular splicing variants of a receptor-type protein tyrosine phosphatase. These proteoglycans may modulate cell interactions and other developmental processes in nervous tissue through heterophilic binding to cell-surface and extracellular matrix molecules, and by competition with ligands of the transmembrane phosphatase.
- State University of New York at Potsdam United States
- SUNY Downstate Medical Center United States
- New York University Langone Medical Center United States
- New York University United States
Neurons, Extracellular Matrix Proteins, Glycosylation, Base Sequence, Receptor-Like Protein Tyrosine Phosphatases, Class 5, Cell Adhesion Molecules, Neuronal, Molecular Sequence Data, Brain, Receptors, Cytoplasmic and Nuclear, Sequence Analysis, DNA, Peptide Fragments, Rats, Alternative Splicing, Chondroitin Sulfate Proteoglycans, Animals, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Protein Tyrosine Phosphatases, Protein Processing, Post-Translational
Neurons, Extracellular Matrix Proteins, Glycosylation, Base Sequence, Receptor-Like Protein Tyrosine Phosphatases, Class 5, Cell Adhesion Molecules, Neuronal, Molecular Sequence Data, Brain, Receptors, Cytoplasmic and Nuclear, Sequence Analysis, DNA, Peptide Fragments, Rats, Alternative Splicing, Chondroitin Sulfate Proteoglycans, Animals, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Protein Tyrosine Phosphatases, Protein Processing, Post-Translational
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2018IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).306 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
