Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 1994 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 1994
versions View all 3 versions

Sequencing of eleven introns in genomic DNA encoding rat glucagon receptor and multiple alternative splicing of its mRNA

Authors: Maget, Barbara; Tastenoy, Michèle; Svoboda, Michal;

Sequencing of eleven introns in genomic DNA encoding rat glucagon receptor and multiple alternative splicing of its mRNA

Abstract

We used the PCR (polymerase chain reaction) to amplify fragments of glucagon receptor DNA from genomic DNA. Sequencing of the subcloned fragments demonstrated that genomic DNA encoding the glucagon receptor spans over 12 exons interrupted by 11 introns. The introns were located mainly at the 5′ end and in the core domain of the glucagon receptor CDS totalling 23 kb. Intron positions were similar to the positions of introns in growth hormone‐releasing hormone receptor and parathyroid hormone receptor, two receptors belonging to the same receptor family as the glucagon receptor. This high number of introns might be the cause of the mRNA polymorphism observed at the 5′ end: when PCR was performed on cDNA using primers amplifying the central or 3′ end cDNA fragments, a single band corresponding to the cloned cDNA was observed. In contrast, if primers amplifying cDNA fragments corresponding to nucleotides −8 to 680 of CDS were used, cDNA fragments of approximately 500 bp, 600 bp, 700 bp, 800 bp and 900 bp were specifically and reproducibly amplified. Sequencing of these fragments showed either incomplete intron removal or splicing at alternative positions. Two of these sequenced variants were translatable in putative glucagon receptor variants: (1) unsplicing of intron III (81 bp) gave an additional 27 amino acid sequence after Lys91 in the N‐terminal domain of the receptor. In the liver, where the normal CDS represented about one third of the mRNA molecules, this mRNA variant represented 18% of total mRNA forms; (2) a 21 bp deletion in exon V giving rise to a putative deletion of 7 amino acids in glucagon receptor (Δ64–84 CDS) was also relatively abundant in the liver (10%). The observed polymorphism of the glucagon receptor mRNA may contribute to the regulation of glucagon receptor expression and perhaps to the heterogeneity of these receptors.

Related Organizations
Keywords

Genome, Models, Genetic, Molecular Sequence Data, Receptor intron, Genetic Variation, Glucagon receptor gene, Sequence Analysis, DNA, Sciences bio-médicales et agricoles, Polymerase Chain Reaction, Introns, Rats, Alternative Splicing, mRNA polymorphism, Receptors, Glucagon, Animals, RNA, Messenger, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Average
Top 10%
Top 10%