Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Stroke an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Stroke and Cerebrovascular Diseases
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Exome Sequencing Identified CCER2 as a Novel Candidate Gene for Moyamoya Disease

Authors: Maki Mukawa; Tadashi Nariai; Hideaki Onda; Taku Yoneyama; Yasuo Aihara; Kengo Hirota; Takumi Kudo; +5 Authors

Exome Sequencing Identified CCER2 as a Novel Candidate Gene for Moyamoya Disease

Abstract

The etiology of Moyamoya disease (MMD) is still largely unclear, despite identification of RNF213 as the most significant susceptibility gene in East Asian patients. Following up our previous study confirming genetic heterogeneity in Japanese patients with MMD, we extensively surveyed novel candidate genes for a new perspective on the etiology of this disease. Two characteristic pedigrees without susceptibility variants in RNF213 were selected for whole-exome sequencing; 1 harbored 3 affected members, and the other included discordant monozygotic twins. In the former pedigree, 12 rare mutations in 12 genes were co-segregated with MMD. One of the most deleterious amino acid changes among these was p.T76_G80delinsPS in CCER2, which was also mutated in the latter pedigree (p.E242K), although the unaffected twin sister shared the same mutation reflecting reduced penetrance. These CCER2 mutations were predicted to promote aggregation or oligomerization of their protein product, using in silico functional analysis. Subsequent CCER2 re-sequencing in an additional 135 MMD probands identified 1 recurrent and an additional 2 in-frame insertion-deletion mutations, recurrent p.T76_G80delinsPS, p.H218_H220del, and p.E299del. Although CCER2 molecular function is not well characterized, it is a secretory protein expressed in the brain; therefore, it constitutes a potential biomarker of MMD.

Keywords

Adenosine Triphosphatases, Family Health, Male, Analysis of Variance, Ubiquitin-Protein Ligases, DNA Mutational Analysis, Middle Aged, Humans, Exome, Female, Genetic Predisposition to Disease, Age of Onset, Moyamoya Disease, Magnetic Resonance Angiography, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%