Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carcinogenesisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carcinogenesis
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carcinogenesis
Article . 2004 . Peer-reviewed
Data sources: Crossref
Carcinogenesis
Article . 2004
versions View all 5 versions

Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk

Authors: HUNG RJ; BOFFETTA P; BRENNAN P; MALAVEILLE C; GELATTI, Umberto; PLACIDI, Donatella; CARTA, Angela; +2 Authors

Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk

Abstract

Tobacco smoking and occupational exposure are major risk factors of bladder cancer via exposure to polycyclic aromatic hydrocarbons (PAHs) and aromatic amines, which lead to oxidative stress and DNA damage. Several enzymes, which play key roles in oxidative stress are polymorphic in humans. Myeloperoxidase (MPO) produces a strong oxidant for microbicidal activity, and activates carcinogens in tobacco smoke. Catechol-O-methyltransferase (COMT) catalyzes the methylation of endo- and xenobiotics and prevents redox cycling. NAD(P)H:quinone oxidoreductase (NQO1) catalyzes the two-electron reduction of quinoid compounds, which also protects cells from redox cycling. Manganese superoxide dismutase (MnSOD) protects cells from free radical injury. To test the hypothesis that the risk of bladder cancer can be influenced by polymorphisms in the genes that modulate oxidative stress, in particular by interacting with environmental carcinogens, we conducted a hospital-based case-control study among men in Brescia, Northern Italy. We recruited and interviewed 201 incident cases and 214 controls from 1997 to 2000. Occupational exposures to PAHs and aromatic amines were coded blindly by occupational physicians. Unconditional multivariate logistic regression was applied to model the association between genetic polymorphisms and bladder cancer risk and the effect of modifications of smoking and occupational exposures were evaluated. MPO G-463A homozygous variant was associated with a reduced risk of bladder cancer with an OR of 0.31 (95% CI = 0.12-0.80). MnSOD Val/Val genotype increased the risk of bladder cancer with OR of 1.91 (95% CI = 1.20-3.04), and there was a combined effect with smoking (OR = 7.20, 95% CI = 3.23-16.1) and PAH (OR = 3.02, 95% CI = 1.35-6.74). We did not observe an effect of COMT Val108Met polymorphism. These findings suggest that individual susceptibility of bladder cancer may be modulated by MPO and MnSOD polymorphisms, and that the combination of genetic factors involved in oxidative stress response with environmental carcinogens may play an important role in bladder carcinogenesis.

Keywords

Adult, Aged, 80 and over, Male, Cocarcinogenesis, Polymorphism, Genetic, Superoxide Dismutase, Glutathione Peroxidase GPX1, Manganese Superoxide Dismutase, Catalase, Environmental Exposure, Middle Aged, Catechol O-Methyltransferase, Urinary Bladder Neoplasms, NAD(P)H Dehydrogenase (Quinone), bladder cancer, Humans, Genetic polymorphism; environmental exposures; bladder cancer, Aged, Peroxidase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    178
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
178
Top 10%
Top 10%
Top 1%
bronze
Related to Research communities
Cancer Research