Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Cell Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2016
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
versions View all 4 versions

The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways

Authors: Eerola Sini K; Rainio Eeva-Marja; Heino Jyrki; Salmela Maria; Santio Niina; Koskinen-Kajuutti Päivi; Eerola Sini-Kirsi;

The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways

Abstract

The ability of cells to migrate and form metastases is one of the fatal hallmarks of cancer that can be conquered only with better understanding of the molecules and regulatory mechanisms involved. The oncogenic PIM kinases have been shown to support cancer cell survival and motility, but the PIM-regulated pathways stimulating cell migration and invasion are less well characterized than those affecting cell survival. Here we have identified the glycogen synthase kinase 3β (GSK3B) and the forkhead box P3 (FOXP3) transcription factor as direct PIM targets, whose tumour-suppressive effects in prostate cancer cells are inhibited by PIM-induced phosphorylation, resulting in increased cell migration. Targeting GSK3B is also essential for the observed PIM-enhanced expression of the prostaglandin-endoperoxide synthase 2 (PTGS2), which is an important regulator of both cell migration and adhesion. Accordingly, selective inhibition of PIM activity not only reduces cell migration, but also affects integrin-mediated cell adhesion. Taken together, these data provide novel mechanistic insights on how and why patients with metastatic prostate cancer may benefit from therapies targeting PIM kinases, and how such approaches may also be applicable to inflammatory conditions.

Related Organizations
Keywords

Male, Glycogen Synthase Kinase 3 beta, ta1184, Prostatic Neoplasms, Forkhead Transcription Factors, Adenocarcinoma, ta3122, Glycogen Synthase Kinase 3, Protein Transport, Proto-Oncogene Proteins c-pim-1, Cell Movement, Cell Line, Tumor, Humans, Amino Acid Sequence, Phosphorylation, Protein Processing, Post-Translational, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%