Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cellular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Physiology
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Morphine-induced MOR-1X and ASF/SF2 Expressions Are Independent of Transcriptional Regulation: Implications for MOR-1X Signaling

MORPHINE-INDUCED MOR-1X AND ASF/SF2 EXPRESSIONS
Authors: Kamel Khalili; Patrick M. Regan; T. Dianne Langford; Prasun K. Datta; Ilker Kudret Sariyer;

Morphine-induced MOR-1X and ASF/SF2 Expressions Are Independent of Transcriptional Regulation: Implications for MOR-1X Signaling

Abstract

Recently, multiple μ-opioid receptor (MOR) isoforms have been identified that originate from a single gene, OPRM1; however, both their regulation and their functional significance are poorly characterized. The objectives of this study were to decipher, first, the regulation of alternatively spliced μ-opioid receptor isoforms and the spliceosome components that determine splicing specificity and, second, the signaling pathways utilized by particular isoforms both constitutively and following agonist binding. Our studies demonstrated that the expression of a particular splice variant, MOR-1X, was up-regulated by morphine, and this coincided with an increase in the essential splicing factor ASF/SF2. Structural comparison of this isoform to the prototypical variant MOR-1 revealed that the unique distal portion of the C-terminal domain contains additional phosphorylation sites, whereas functional comparison found distinct signaling differences, particularly in the ERK and p90 RSK pathways. Additionally, MOR-1X expression significantly reduced Bax expression and mitochondrial dehydrogenase activity, suggesting a unique functional consequence for MOR-1X specific signaling. Collectively, these findings suggest that alternative splicing of the MOR is altered by exogenous opioids, such as morphine, and that individual isoforms, such as MOR-1X, mediate unique signal transduction with distinct functional consequence. Furthermore, we have identified for the first time a potential mechanism that involves the essential splicing factor ASF/SF2 through which morphine regulates splicing specificity of the MOR encoding gene, OPRM1.

Related Organizations
Keywords

Alternative Splicing, Gene Expression Regulation, Morphine, Serine-Arginine Splicing Factors, Transcription, Genetic, Receptors, Opioid, mu, Humans, Protein Isoforms, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
bronze