Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2015
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2014
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions

A Functional Insulator Screen Identifies NURF and dREAM Components to Be Required for Enhancer-Blocking

Authors: Bohla, Dorte; Herold, Martin; Panzer, Imke; Buxa, Melanie K; Ali, Tamer; Demmers, Jeroen; Krüger, Marcus; +4 Authors

A Functional Insulator Screen Identifies NURF and dREAM Components to Be Required for Enhancer-Blocking

Abstract

Chromatin insulators of higher eukaryotes functionally divide the genome into active and inactive domains. Furthermore, insulators regulate enhancer/promoter communication, which is evident from the Drosophila bithorax locus in which a multitude of regulatory elements control segment specific gene activity. Centrosomal protein 190 (CP190) is targeted to insulators by CTCF or other insulator DNA-binding factors. Chromatin analyses revealed that insulators are characterized by open and nucleosome depleted regions. Here, we wanted to identify chromatin modification and remodelling factors required for an enhancer blocking function. We used the well-studied Fab-8 insulator of the bithorax locus to apply a genome-wide RNAi screen for factors that contribute to the enhancer blocking function of CTCF and CP190. Among 78 genes required for optimal Fab-8 mediated enhancer blocking, all four components of the NURF complex as well as several subunits of the dREAM complex were most evident. Mass spectrometric analyses of CTCF or CP190 bound proteins as well as immune precipitation confirmed NURF and dREAM binding. Both co-localise with most CP190 binding sites in the genome and chromatin immune precipitation showed that CP190 recruits NURF and dREAM. Nucleosome occupancy and histone H3 binding analyses revealed that CP190 mediated NURF binding results in nucleosomal depletion at CP190 binding sites. Thus, we conclude that CP190 binding to CTCF or to other DNA binding insulator factors mediates recruitment of NURF and dREAM. Furthermore, the enhancer blocking function of insulators is associated with nucleosomal depletion and requires NURF and dREAM.

Keywords

CCCTC-Binding Factor, Binding Sites, Science, Q, R, Nuclear Proteins, Chromatin, Mass Spectrometry, Repressor Proteins, Drosophila melanogaster, EMC MGC-02-21-01, Medicine, Animals, Drosophila Proteins, Insulator Elements, Microtubule-Associated Proteins, Research Article, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Green
gold