Powered by OpenAIRE graph

The calcium-sensing receptor in human disease

Authors: Jacob, Tfelt-Hansen; Peter, Schwarz; Edward M, Brown; Naibedya, Chattopadhyay;
Abstract

The discovery of the calcium-sensing receptor (CaR), a G protein-coupled receptor, has led to the elucidation of the pivotal roles of the CaR in systemic calcium homeostasis. The receptor is situated on the chief cells of the parathyroid glands, where it senses the extracellular Ca2+ concentration and in turn alters the rate of secretion of parathyroid hormone (PTH). The intracellular signal pathways to which the CaR couples include, but are not limited to, phospholipase C (PLC), and mitogen-activated protein kinases. The receptor is widely expressed in various tissues and likely serves important cellular functions beyond that of maintaining systemic calcium homeostasis. Functionally important mutations in the receptor have been found to cause disorders in calcium homeostasis due both to changes in the set point for PTH secretion and to the control of renal calcium excretion. These mutations cause hypercalcemia when the mutation inactivates the receptor and cause hypocalcemia when the mutation activates the receptor. Recent studies have revealed the presence of circulating autoantibodies to the calcium-sensing receptor in humans, with the clinical presentation the same as that for diseases caused by mutations in the CaR. In renal secondary hyperparathyroidism, a drug that stimulates the receptor (calcimimetic) shows great promise as a medical treatment for this condition.

Related Organizations
Keywords

Calcium Metabolism Disorders, Parathyroid Diseases, Animals, Humans, Receptors, Calcium-Sensing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%